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ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ 

ГИС (GIS) — Геоинформационная система — совокупность 

программных и аппаратных средств, обеспечивающих сбор, хранение, 

обработку, анализ и визуализацию пространственных данных. Используется в 

диссертации как основная инфраструктура для пространственного анализа 

территорий. 

ДЗЗ (RS) — Дистанционное зондирование Земли — технология 

получения информации о земной поверхности с использованием спутников и 

беспилотных аппаратов. Применяется для извлечения признаков (NDVI, NDBI, 

NDWI) и построения обучающих выборок. 

ЦМР (DEM) — Цифровая модель рельефа — цифровое представление 

высотных характеристик местности. Используется для анализа уклонов и 

экспозиций при оценке пригодности территорий. 

NDVI — Normalized Difference Vegetation Index — нормализованный 

вегетационный индекс, характеризующий степень развития растительности и 

используется для определения плодородности и экологического состояния 

территории. 

NDBI — Normalized Difference Built-up Index — индекс застроенных 

территорий, позволяющий выделять урбанизированные зоны и оценивать 

плотность городской инфраструктуры. 

NDWI — Normalized Difference Water Index — индекс водных 

поверхностей, предназначенный для выделения рек, озёр и влажных участков 

на спутниковых изображениях. 

ERA5 — ECMWF Reanalysis v5 — набор климатических данных, 

предоставляемый Европейским центром среднесрочных прогнозов погоды, 

включающий температуру, осадки, влажность и ветровую активность. 

Используется в проекте для климатического моделирования пригодности 

территорий. 

WorldPop — глобальная база данных распределения населения, 

применяемая для оценки плотности расселения и анализа антропогенной 

нагрузки на территории. 

Copernicus DEM — цифровая модель рельефа программы Европейского 

космического агентства Copernicus, используемая для расчёта топографических 

признаков в диссертационной модели. 

Sentinel-2 — спутниковая миссия Европейского космического агентства, 

предоставляющая мультиспектральные снимки с пространственным 

разрешением 10–20 м, используемые в качестве основного источника 

пространственных данных. 

Landsat-8/9 — спутники NASA/USGS, обеспечивающие глобальные 

архивы ДЗЗ среднего разрешения (30 м). Применяются для временного анализа 

изменений землепользования. 

OSM (OpenStreetMap) — открытые векторные геоданные, содержащие 

информацию о дорогах, зданиях и инфраструктуре. Используются для 

извлечения транспортных и инфраструктурных признаков. 
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ML (Machine Learning) — Машинное обучение — совокупность 

алгоритмов и методов, позволяющих моделировать закономерности в данных и 

выполнять прогнозы территориальной пригодности. 

DL (Deep Learning) — Глубокое обучение — направление машинного 

обучения, основанное на многослойных нейронных сетях. Используется в 

работе для построения гибридных моделей анализа пространственно-

временных данных. 

RF (Random Forest) — алгоритм ансамблевого обучения, основанный на 

построении множества деревьев решений. Применяется для базового 

моделирования пригодности территорий. 

CNN (Convolutional Neural Network) — Сверточная нейронная сеть, 

предназначенная для анализа изображений, используется для выделения 

пространственных признаков со спутниковых данных. 

LSTM (Long Short-Term Memory) — разновидность рекуррентных сетей, 

применяемая для обработки климатических временных рядов. 

CNN–LSTM — гибридная модель, объединяющая возможности CNN 

(пространственное восприятие) и LSTM (временная зависимость), 

используемая в проекте для интегрального анализа пространственно-

временных данных. 

SHAP (SHapley Additive exPlanations) — метод интерпретации моделей, 

позволяющий количественно оценить вклад каждого признака в результат 

прогнозирования. 

Accuracy / Precision / Recall / F1-score — метрики качества моделей 

классификации, применяемые для сравнительного анализа алгоритмов. 

MSE / RMSE / MAE — стандартные метрики регрессионных моделей: 

среднеквадратическая, корневая и абсолютная ошибки соответственно. 

Kappa (Cohen’s κ) — коэффициент согласованности между предсказанной 

и истинной классификацией, учитывающий влияние случайности. 

CV (Cross-Validation) — метод перекрёстной проверки, используемый для 

оценки обобщающей способности моделей. 

MCE (Multi-Criteria Evaluation) — метод многокритериальной оценки, 

применяемый для интеграции различных геопространственных критериев 

(рельеф, климат, инфраструктура) в единую карту пригодности. 

API (Application Programming Interface) — интерфейс взаимодействия 

между программными компонентами, используется в разработанной системе 

для автоматизированного вызова алгоритмов анализа. 

CLI (Command Line Interface) — интерфейс командной строки, 

обеспечивающий удобный запуск моделей и обработку данных. 

ТП (Территориальная пригодность) — интегральная характеристика, 

отражающая степень соответствия участка заданным условиям (рельеф, 

инфраструктура, экология и др.). 

КИ (Класс пригодности) — категория оценки пригодности территории 

(например, «высокая», «средняя», «низкая»), получаемая по результатам 

моделирования. 
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ВВЕДЕНИЕ 

Актуальность темы исследования.  Современные процессы 

урбанизации, демографического роста и освоения новых территорий 

обуславливают необходимость повышения эффективности территориального 

планирования. Управление пространственным развитием городов и регионов 

требует комплексного анализа геопространственных данных, включающих 

природно-климатические, инфраструктурные, социально-экономические и 

экологические характеристики. Однако традиционные методы анализа, 

базирующиеся на геоинформационных системах (ГИС) и статистическом 

моделировании, обладают ограниченной способностью выявлять скрытые 

нелинейные зависимости в многомерных данных. Это снижает точность 

прогнозов и объективность принимаемых решений. 

В условиях активного развития технологий искусственного интеллекта и 

машинного обучения открываются новые возможности для интеллектуальной 

обработки пространственных данных, включая автоматизированную 

интерпретацию данных дистанционного зондирования Земли (ДЗЗ), построение 

прогностических моделей и оптимизацию территориального планирования. 

Алгоритмы машинного обучения позволяют выявлять сложные 

закономерности, адаптироваться к гетерогенным данным и формировать более 

точные пространственные прогнозы. 

Тем не менее, существующие подходы к применению ИИ в 

территориальном анализе остаются фрагментарными, а интеграция 

климатических, социально-экономических и инфраструктурных факторов в 

единую аналитическую систему — нерешённой задачей. Это определяет 

необходимость разработки комплексных моделей, сочетающих методы 

машинного обучения с ГИС-технологиями, для построения интеллектуальных 

систем территориального планирования нового поколения. Актуальность 

исследования обусловлена потребностью в создании таких моделей, способных 

повысить обоснованность градостроительных решений и содействовать 

формированию устойчивой урбанистической среды. 

Степень разработанности темы исследования. Проблематика анализа и 

интерпретации пространственных данных в системах территориального 

планирования на протяжении последних десятилетий остаётся предметом 

активного научного интереса в области геоинформатики, урбанистики и 

технологий искусственного интеллекта. Значительный вклад в развитие данной 

области внесли исследования, посвящённые развитию геоинформационных 

систем (ГИС), методам пространственной интерполяции, моделям оценки 

пригодности земельных участков и системам поддержки принятия 

градостроительных решений. 

На современном этапе активно развиваются подходы, ориентированные 

на интеграцию данных дистанционного зондирования Земли (ДЗЗ), цифровых 

моделей рельефа (ЦМР), климатических показателей и социально-

экономической информации в единые аналитические платформы для 

комплексной территориальной оценки. В зарубежной практике особое 
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внимание уделяется применению методов машинного обучения и нейросетевых 

архитектур — в частности, сверточных нейронных сетей (CNN), моделей 

глубокого обучения (Deep Learning), а также ансамблевых алгоритмов — для 

решения задач пространственного моделирования, таких как прогноз 

урбанизации, оценка ландшафтной пригодности, выявление зон риска и 

экологического мониторинга. 

В научной среде Казахстана и других стран СНГ данное направление 

пока находится на этапе становления. Несмотря на наличие ряда исследований, 

фокусирующихся на использовании, ГИС и статистических подходов в 

территориальном анализе, внедрение современных методов машинного 

обучения осуществляется фрагментарно. Особенно слабо представлены 

комплексные алгоритмические решения, способные эффективно интегрировать 

пространственные, табличные и климатические данные с учётом региональных 

особенностей. 

Таким образом, отсутствие единых методических подходов, 

недостаточная адаптация современных алгоритмов ИИ к национальным 

условиям и необходимость повышения точности пространственного анализа 

определяют актуальность и научную новизну настоящего исследования. 

Объект исследования – пространственные данные, характеризующие 

природные, инфраструктурные, социально-экономические и экологические 

параметры территорий, используемые в системах территориального 

планирования. 

Предмет исследования – методы и алгоритмы анализа, обработки и 

моделирования пространственных данных с применением технологий 

машинного обучения для решения задач территориального планирования и 

оценки пригодности земель. 

Цель исследования заключается в разработке и научном обосновании 

методов анализа пространственных данных на основе алгоритмов машинного 

обучения для повышения точности, автоматизации и эффективности процессов 

территориального планирования. 

Задачи исследования: 

1. Провести критический анализ современных методов 

пространственного моделирования и оценить ограничения традиционных ГИС-

подходов в задачах территориального планирования. 

2. Обосновать необходимость применения алгоритмов машинного 

обучения и разработать методику интеграции многомасштабных 

пространственных данных (включая климатические, инфраструктурные, 

рельефные и социально-экономические параметры) в единую аналитическую 

модель. 

3. Разработать и адаптировать алгоритмы машинного обучения, 

включая ансамблевые методы (Random Forest, Gradient Boosting) и гибридную 

нейросетевую архитектуру CNN–MLP, для классификации и прогнозирования 

территориальной пригодности. 
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4. Реализовать интеллектуальную систему пространственного анализа, 

включающую модули обработки спутниковых изображений (Sentinel-2), 

цифровых моделей рельефа (Copernicus DEM) и климатических индексов. 

5. Провести экспериментальную апробацию разработанных моделей 

на примере южного региона Казахстана (г. Алатау) и оценить их 

эффективность по метрикам Accuracy, F1-score, ROC-AUC и Cohen’s Kappa. 

6. Разработать практические рекомендации по применению 

разработанной системы в территориальном планировании, включая 

автоматизированную оценку пригодности земель и выявление перспективных 

зон для застройки. 

Методы исследования. Для решения поставленных в диссертационной 

работе задач применялись современные методы анализа и обработки 

пространственных данных, основанные на технологиях машинного обучения и 

искусственного интеллекта. Особое внимание уделялось разработке и 

апробации гибридной нейросетевой архитектуры CNN–MLP, сочетающей 

возможности свёрточных нейронных сетей (Convolutional Neural Networks, 

CNN) и многослойного персептрона (Multilayer Perceptron, MLP) в задачах 

пространственного моделирования. 

В рамках исследования были использованы следующие подходы и 

инструменты: 

Алгоритмы машинного обучения — для задач классификации и регрессии 

применялись ансамблевые методы (Random Forest, Gradient Boosting), а также 

глубокие нейросетевые архитектуры (CNN, MLP), позволяющие выявлять 

сложные пространственные зависимости и проводить точное прогнозирование 

территориальной пригодности. 

Методы семантической сегментации — использовались для 

автоматического распознавания объектов инфраструктуры, растительности, 

рельефа и других характеристик на спутниковых изображениях и цифровых 

моделях рельефа. 

Предварительная обработка данных — включала нормализацию 

признаков, фильтрацию шумов, улучшение контрастности изображений, а 

также снижение размерности с использованием методов PCA (Principal 

Component Analysis) и t-SNE для оптимизации обучающего пространства. 

Источники и типы данных — применялись спутниковые снимки Sentinel-

2, цифровые модели высот Copernicus DEM, климатические показатели, 

социально-экономические и инфраструктурные данные, интегрированные в 

единую аналитическую систему. 

Программные средства — для реализации алгоритмов использовались 

библиотеки Python: TensorFlow, Keras, Scikit-learn, OpenCV, GDAL, а также 

геоинформационные платформы QGIS и ArcGIS. 

Такой комплексный методологический подход обеспечил разработку 

интеллектуальной системы пространственного анализа, способной эффективно 

обрабатывать большие массивы геоданных, проводить точную классификацию 

территорий и визуализировать результаты в форме тематических карт и 

аналитических отчетов. 
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Научная новизна диссертационного исследования:  

1. Впервые предложен комплексный подход к анализу 

пространственных данных в системах территориального планирования, 

основанный на интеграции геоинформационных технологий и алгоритмов 

машинного обучения, что обеспечивает повышение точности и объективности 

оценок территориальной пригодности. 

2. Разработана архитектура интеллектуальной системы анализа 

пространственных данных, включающая модули автоматизированной 

обработки спутниковых изображений, цифровых моделей рельефа и 

климатических показателей с использованием сверточных нейронных сетей 

(CNN) и многослойного персептрона (MLP). 

3. Предложены новые методы предварительной и вторичной 

обработки геопространственных данных, включающие фильтрацию шумов, 

нормализацию признаков и построение комбинированных карт признаков, что 

позволяет повысить эффективность обучения нейронных моделей. 

4. Разработан алгоритм прогнозирования территориальной 

пригодности на основе ансамблевых моделей машинного обучения (Random 

Forest, Gradient Boosting), адаптированный к региональным условиям 

Казахстана и учитывающий климатические, социально-экономические и 

инфраструктурные параметры. 

5. Проведена экспериментальная апробация разработанных методов 

на реальных пространственных данных (данные Sentinel-2, Copernicus DEM, 

климатические индексы), подтверждающая достоверность и эффективность 

предложенного подхода по сравнению с традиционными ГИС-методами. 

6. Научная новизна заключается также в разработке единой методики 

интеллектуального анализа пространственных данных, позволяющей 

интегрировать машинное обучение в процесс территориального планирования 

и тем самым формировать основу для создания национальных 

геоинформационных платформ нового поколения. 

Теоретическая и практическая значимость 

Научный вклад данного исследования заключается в развитии 

теоретических основ пространственного анализа и интеграции методов 

машинного обучения в территориальное планирование. В отличие от 

традиционных ГИС-подходов, основанных на жёстко заданных правилах или 

простых регрессионных моделях, в работе предложена новая гибридная 

нейросетевая архитектура CNN–MLP, обеспечивающая автоматическое 

извлечение признаков из геопространственных данных и их последующую 

интерпретацию в контексте многофакторного анализа территориальной 

пригодности. 

Разработанный подход предлагает формализацию процесса оценки 

пригодности через многослойную обучаемую функцию классификации, где 

входными переменными являются как растровые (включая уклон, структуру 

рельефа, индекс застройки), так и векторные признаки (климатические, 

демографические и инфраструктурные параметры). Тем самым, расширяется 

математическая модель пространственной оценки за счёт нелинейного 
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аппроксиматора в виде нейросети, способного учитывать сложные 

взаимодействия между факторами. 

Кроме того, в рамках исследования: 

- предложена схема конкатенации признаков из различных 

источников в гибридной архитектуре, обеспечивающая единый процесс их 

обучения и классификации; 

- уточнены принципы построения карты уклонов с использованием 

сверточной нейросети, где параметры фильтров автоматически подбираются на 

этапе обучения, что позволило избежать субъективного определения порогов 

уклона; 

- применены и адаптированы методы интерпретации моделей (SHAP, 

LIME) к задачам пространственного анализа, что расширяет теоретические 

основания оценки нейросетевых предсказаний в геоинформатике. 

Таким образом, теоретическая значимость работы заключается не только 

в разработке новой архитектуры, но и в формализации метода интеграции 

разнотипных пространственных признаков в обучаемую модель, способную 

адаптироваться к новым данным и регионам, а также в расширении 

методологической базы пространственного моделирования на основе 

современных достижений искусственного интеллекта. 

Практическая значимость полученных результатов диссертационного 

исследования заключается в том, что разработанные методы и алгоритмы 

позволяют с высокой точностью (до 92–95%) проводить автоматизированную 

оценку пригодности территорий на основе спутниковых изображений и 

геоданных. Реализованная система анализа пространственных данных может 

быть применена для поддержки принятия решений в области 

градостроительства, инфраструктурного планирования и экологического 

мониторинга. 

Основные положения, выносимые на защиту: 

1. Разработан алгоритм интеграции и анализа пространственных 

данных, обеспечивающий автоматизированную обработку спутниковых 

изображений, цифровых моделей рельефа и климатических параметров на 

основе гибридной нейросетевой архитектуры CNN–MLP. Использование 

свёрточной части модели (CNN) позволило эффективно извлекать 

пространственные признаки, а многослойный персептрон (MLP) обеспечил 

точную классификацию территориальной пригодности. 

2. Предложена методика интеллектуального моделирования 

территориальной пригодности, основанная на использовании гибридной 

модели CNN–MLP в сочетании с ансамблевыми алгоритмами (Random Forest, 

Gradient Boosting). Реализация этой методики обеспечила достижение точности 

прогнозирования до 93%, что подтверждает её применимость для задач 

территориального планирования, градостроительства и пространственного 

зонирования на основе гетерогенных геоданных. 

Степень достоверности результатов работы 

Достоверность полученных научных результатов диссертационного 

исследования подтверждается следующим: 
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- Стабильностью и воспроизводимостью результатов, полученных 

при многократных вычислительных экспериментах с использованием 

различных пространственных выборок и параметров, что свидетельствует о 

надёжности разработанных алгоритмов машинного обучения, включая 

гибридную нейросетевую модель CNN–MLP; 

- Экспериментальной валидацией моделей на реальных 

геопространственных данных, включая спутниковые изображения Sentinel-2, 

цифровые модели рельефа Copernicus DEM, а также климатические и 

инфраструктурные показатели исследуемой территории. Оценка 

эффективности проводилась с применением общепринятых метрик 

качества: accuracy, precision, recall, F1-score, которые продемонстрировали 

высокую точность прогнозирования (до 93%); 

- Публикацией ключевых результатов исследования в рецензируемых 

научных журналах, индексируемых в международных базах Scopus и Web of 

Science, а также их апробацией на профильных конференциях, что 

подтверждает научную состоятельность и прикладную значимость 

предложенного подхода к интеллектуальному анализу пространственных 

данных. 

Апробация результатов диссертационного исследования. 

Основные научные результаты диссертационного исследования 

докладывались и обсуждались на международных и республиканских научных 

конференциях, а также опубликованы в высокорейтинговых изданиях, 

индексируемых в международных базах данных Scopus и Web of Science. 

1. Akylbekov O., Al Said N., Martínez-García R., Gura D. (2022). ML 

models and neural networks for analyzing 3D data spatial planning tasks: Example of 

Khasansky urban district of the Russian Federation. Advances in Engineering 

Software, Vol. 173: 103251 (2022) https://doi.org/10.1016/j.advengsoft.2022.103251 

(Web of Science, Q1; Scopus, процентиль (Software) – 75 %). 

https://www.sciencedirect.com/journal/advances-in-engineering-software  

2. Sultan D., Mendes M., Kassenkhan A., Akylbekov O. (2023). Hybrid 

CNN-LSTM Network for Cyberbullying Detection on Social Networks using Textual 

Contents. International Journal of Advanced Computer Science and Applications 

(IJACSA). Vol. 14, No. 9, pp. 748–756. (2023). 10.14569/IJACSA.2023.0140978  

(Web of Science, Q3; Scopus, процентиль (General Computer Science) – 43 

%). https://ijecs.in/index.php/ijecs  

3. Akylbekov, O., Alshynov, Sh., Tulegenova, A., Ramazanova, L., & 

Baimukanova, Zh. (2025). Machine learning methods for analysis of photo/video 

files from cameras. International Journal of Artificial Intelligence, Vol. 23(2), 40–56 

(2025) https://www.scopus.com/pages/publications/105026377206?origin=resultslist 

(Web of Science, Q3; Scopus, процентиль (General Computer Science) – 26 %). 

https://www.scopus.com/sourceid/19600166036 

Публикации и вклад докторанта 

Основные результаты диссертационного исследования отражены в трёх 

научных публикациях, включая: 

https://doi.org/10.1016/j.advengsoft.2022.103251
https://www.sciencedirect.com/journal/advances-in-engineering-software
https://thesai.org/Publications/ViewPaper?Volume=14&Issue=9&Code=IJACSA&SerialNo=78
https://ijecs.in/index.php/ijecs
https://www.scopus.com/pages/publications/105026377206?origin=resultslist
https://www.scopus.com/sourceid/19600166036
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- одну статью, опубликованную в журнале, индексируемом в базе 

данных Scopus с процентилем 75% (журнал Advances in Engineering 

Software, Q1 по классификации Web of Science); 

- одну статью в журнале с процентилем 43% (журнал International 

Journal of Advanced Computer Science and Applications, Q3 по классификации 

Web of Science); 

- одну статью в журнале с процентилем 26% (журнал International 

Journal of Artificial Intelligence, Q3 по классификации Web of Science); 

- а также одну публикацию в материалах международной научной 

конференции. 

Докторант внёс основополагающий вклад в реализацию всех этапов 

исследования, включая: 

- формирование концепции и методологического аппарата; 

- сбор, обработку и нормализацию пространственных и климатических 

данных; 

- построение, обучение и тестирование моделей машинного обучения, 

включая гибридную архитектуру CNN–MLP; 

- визуализацию и интерпретацию результатов анализа; 

- написание текстов статей и подготовку научных докладов; 

- обеспечение экспериментальной верификации полученных 

результатов. 

Все публикации выполнены с соблюдением академических стандартов и 

прошли внешнее рецензирование, что подтверждает научную состоятельность 

диссертационного исследования и значимость его результатов для развития 

области интеллектуального пространственного анализа и территориального 

планирования. 

Структура диссертации 

Рассматриваемая диссертация состоит из введения, четырех глав, 

заключения, списка использованной литературы и приложений. Объем данной 

диссертации составляет 129 страниц с 32 рисунками и 5 таблицами. Список 

литературы содержит 122 наименований, а также 5 приложений. 
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1 ОБЗОР МЕТОДОВ АНАЛИЗА ПРОСТРАНСТВЕННЫХ ДАННЫХ 

В СИСТЕМАХ ТЕРРИТОРИАЛЬНОГО ПЛАНИРОВАНИЯ 

1.1 Территориальное планирование 

Территориальное планирование представляет собой инструмент 

обеспечения устойчивого развития регионов (SDG) через правовые, 

административные, экономические и экологические меры. Управление 

пространственным развитием — это комплексная междисциплинарная задача. 

В условиях современной урбанизации и трансформации среды 

пространственное проектирование становится важной частью общественного 

дискурса, особенно на уровне регионов и муниципалитетов. Европейский опыт 

показывает, что ключевые аспекты мониторинга включают: формирование 

исходной информации для разработки стратегий на национальном, 

региональном и локальном уровнях; координацию во время реализации; 

последующие редакции планов и концепций; согласование с существующими 

планами отраслевых программ; автоматизацию процесса мониторинга и 

применения средств искусственного интеллекта [1].  

Демократический контроль над инфраструктурным развитием — 

ключевой фактор эффективности этого процесса. Для внедрения современных 

подходов в сферу пространственного планирования необходимо развитие 

партнёрских связей и создание сетевого взаимодействия как на уровне 

организации, так и в рамках формирования исследовательской и аналитической 

инфраструктуры. В этом контексте требуется запуск единых кооперационных 

платформ, объединяющих разнообразные инициативы, формирующие основу 

для стратегического управления [1]. Благодаря совместным усилиям партнёров 

на региональном и национальном уровнях были реализованы комплексные 

проекты, ориентированные на решение геоинформационных, экологических и 

социальных проблем в рамках реализации политики устойчивого развития [2]. 

Ключевой задачей проектирования и управления пространственными 

структурами расселения, развития и инфраструктуры является создание 

эффективной модели, способной урегулировать конфликты между различными 

формами использования территории и учитывать разнообразные, нередко 

противоречивые интересы участников пространственного планирования [2]. 

Систематизация географической информации остаётся ключевой задачей 

территориального планирования. С переходом от аналоговых к цифровым 

носителям меняется и технический подход к представлению пространственных 

данных, однако необходимость их структурирования и агрегирования остаётся 

высоко востребованной [3]. Геоинформационные базы данных позволяют не 

только формировать картографические представления, но и моделировать 

пространственные объекты, их классификацию и иерархическое устройство [6]. 

Поскольку подобные структуры имеют выраженную пространственную 

составляющую, они требуют соблюдения определённого уровня разрешения 

как в геометрическом, так и в смысловом (семантическом) плане — этот 

уровень часто обозначают как «детализацию основания». Автоматизация 

обобщения пространственной информации подразумевает переход от 
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детализированных данных к более упрощённым представлениям при 

сохранении ключевых топологических и смысловых связей [7]. Однако объёмы 

данных, применяемые в сфере пространственного анализа, требуют 

автоматизированной обработки с использованием методов машинного 

обучения. Традиционные подходы мониторинга и оценки, включая 

дистанционное зондирование, представляют собой технологии измерения 

отражённой или излучённой поверхностью энергии. Независимо от способа 

сбора, такие методы в итоге позволяют определить координаты, описывающие 

положение и геометрию наблюдаемых объектов и процессов. Объекты и 

явления могут быть описаны в системе координат как в статическом, так и в 

динамическом аспекте. Одной из ключевых форм пространственного 

представления является карта, хотя она не является единственным способом 

моделирования территории. Понятия, такие как геовизуализация, цифровая и 

трёхмерная картография, пространственные базы данных, ортофотопланы и 

модели земного покрова, нередко пересекаются по содержанию и используются 

в качестве взаимозаменяемых терминов в контексте визуализации 

географической информации. Выделяют два основных типа дистанционного 

зондирования: пассивное, основанное на измерении солнечного излучения, 

отражённого от поверхности Земли, и активное, при котором используются 

собственные источники излучения заданного диапазона. Принцип работы 

методов дистанционного наблюдения заключается в различиях отражательной 

способности объектов. Существует широкий спектр сенсорных платформ — от 

орбитальных спутников до устройств, встроенных в мобильные телефоны [6-7]. 

Несмотря на высокое разрешение, спутниковые снимки имеют существенный 

недостаток: облачность, вызванная погодными условиями, может снижать 

качество изображений над исследуемой территорией. В таких случаях 

использование беспилотных летательных аппаратов (дронов) позволяет 

получить более чёткие данные. Однако применение дронов ограничено по 

высоте полёта и радиусу действия. Спутниковые системы преимущественно 

фиксируют мультиспектральные данные, охватывающие широкий диапазон 

электромагнитного спектра, что позволяет получать обширные массивы 

информации. Для мониторинга состояния окружающей среды дополнительно 

применяются датчики, работающие на основе регистрации электромагнитного 

излучения, акустических волн, а также химических соединений, улавливаемых 

сенсорами запахов [9]. Установка сенсоров на спутниковых платформах, таких 

как Landsat [9] и Eumetsat [8], а также на ракетах-зондах, аэростатах и других 

летательных аппаратах [11], требует значительных финансовых и 

организационных ресурсов. Альтернативный подход — размещение 

оборудования на стационарных носителях, включая наземные установки [11] 

или низкоуровневые платформы [12], — обеспечивает более ограниченное 

покрытие и снижает объём собираемых данных. Геоинформационные 

технологии находят активное применение в прикладных задачах, особенно в 

сфере пространственного планирования [6]. Вместе с тем остаётся актуальной 

задача совершенствования картографических систем, обусловленная 

необходимостью точного распознавания объектов средствами спутникового 
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наблюдения [7]. Создаваемые на этой основе тематические карты применяются 

для визуализации размещения объектов, связанных с природоохранной 

деятельностью [8]. В рамках проведённого анализа были рассмотрены 

изменения ландшафта с позиции перспектив его пространственного развития. 

Исследование основывалось на ландшафтной концепции, рассматривающей 

территорию как «пространственно-временную систему», включающую 

взаимосвязанные иерархические уровни. Были выделены три ключевые 

подсистемы: (а) абиотическая, (б) биологическая, (в) антропогенная. 

Взаимодействие этих компонентов формировало характерные черты и 

структуру ландшафта [6]. Такой подход дал возможность провести 

комплексную оценку исследуемой местности и учесть её характерные 

особенности путём выделения критериев для классификации ландшафтных 

единиц. В рамках исследования использовались методы дистанционного 

зондирования, позволяющие охватывать большие площади, а также 

геоинформационная система SIP, применяемая для обработки и анализа 

пространственных данных [6]. Системы на базе искусственного интеллекта 

могут существовать как в программной форме — в виде алгоритмов 

распознавания изображений, лиц или речи, — так и в виде аппаратных 

решений, включая дроны и автономные транспортные средства. В данном 

исследовании программные ИИ-системы были применены для подготовки 

ключа к фотоинтерпретации ландшафтных единиц и последующего анализа 

двух спутниковых снимков SPOT методом экранной интерпретации. Обработка 

спутниковых изображений требует использования высокопроизводительного 

программного обеспечения и облачных вычислительных ресурсов. 

Инструменты искусственного интеллекта и алгоритмы машинного обучения 

выступают ключевыми технологиями для анализа пространственных данных. В 

контексте настоящего исследования основное внимание было сосредоточено на 

реализации гибридной нейросетевой архитектуры CNN–MLP, способной 

интегрировать табличные, картографические и спутниковые данные в единую 

аналитическую систему пространственного анализа. Эта архитектура была 

выбрана как основная модель благодаря своей универсальности, устойчивости 

к гетерогенности входных данных и высокой точности при классификации 

территориальных объектов. По мнению исследователей [6], отсутствие 

полноценной национальной системы мониторинга территориального развития 

связано с тем, что существующие подходы к планированию пока не включают в 

себя современные ИИ-решения. В последние годы для анализа тенденций и 

построения прогнозных моделей всё чаще применяются нейронные сети и 

алгоритмы машинного обучения [6]. Наряду с этим остаётся актуальной задача 

создания интерактивных приложений, обеспечивающих быстрый и удобный 

доступ к визуализированным геоданным [7]. Развитие в направлении умных и 

устойчивых городов требует понимания как характера происходящих 

изменений, так и потенциала для улучшения городской среды и повышения 

качества жизни населения. Это особенно важно в контексте цифровой 

трансформации, ориентированной на устойчивое и ответственное развитие. 

Кроме того, необходима новая методология управления городскими проектами, 
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учитывающая экономические, социальные и экологические факторы, а также 

возможные ограничения. Объектом исследования является система 3D 

мониторинга территории [11]. Предметом исследования – модели и методы 

машинного обучения и построения нейронной сети для задач территориального 

планирования.  

Целью настоящего исследования является проведение мониторинга 

территории города Алатау с целью ранжирования участков по степени 

пригодности для застройки. В работе применён комплексный подход, 

включающий предварительную обработку геоданных, формирование 

признакового пространства и обучение моделей глубокого обучения, подробно 

описанных в последующих разделах. 

Для достижения поставленной цели были решены следующие задачи: 

исследованы географические и климатические характеристики региона с 

использованием разработанных приложений в среде Copernicus; проведено 

построение нейросетевой модели для распознавания изображений и 

трёхмерного прогнозирования уклонов местности; реализована гибридная 

нейронная сеть CNN–MLP, способная одновременно обрабатывать 

спутниковые изображения, включая цифровые модели рельефа, и табличные 

пространственные признаки. 

Выбор CNN–MLP в качестве основной архитектуры обусловлен её 

универсальностью: она сочетает возможности свёрточных слоёв для извлечения 

признаков с изображений с полносвязными слоями для анализа табличных и 

инфраструктурных данных. Такой подход обеспечил создание комплексной 

системы территориального планирования, способной учитывать как 

пространственные, так и семантические особенности местности при 

формировании прогноза пригодности земельных участков. 

1.2 Современные подходы к пространственному анализу данных 

Методы пространственной аналитики представляют собой совокупность 

подходов, направленных на выявление закономерностей и структур в 

географически привязанных данных. В сфере градостроительного 

моделирования они позволяют оценивать пригодность земель, выявлять риски 

и обосновывать стратегические решения. С развитием геоинформационных 

систем (ГИС), дистанционного мониторинга и методов искусственного 

интеллекта подходы к работе с пространственными данными претерпели 

существенные изменения: традиционные статистические методы всё чаще 

дополняются или заменяются алгоритмами машинного (ML) и глубокого 

обучения (DL) [5], [14], [22], [27], [38].  

Ключевые тенденции и подходы, на которые опирается современный 

пространственный анализ, включают: 

Интеграция ГИС, дистанционного зондирования Земли (ДЗЗ) и 

алгоритмов машинного обучения. Современные исследования опираются на 

объединение мультиспектральных, гиперспектральных и радарных данных ДЗЗ 

с пространственными слоями ГИС, отражающими параметры рельефа, 

инфраструктуры, плотности населения и других факторов. Алгоритмы 
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машинного обучения применяются для задач классификации землепользования, 

сегментации объектов, мониторинга изменений и прогнозирования 

пространственных процессов [14], [22], [27], [66], [92]. Применение глубоких 

архитектур, таких как свёрточные нейронные сети (CNN) и рекуррентные сети 

(LSTM), позволяет извлекать пространственно-временные зависимости из 

сложных многомерных данных [7], [16], [72], [73].  

Многокритериальные и многофакторные модели. В задачах 

территориального планирования большое значение приобретает учет комплекса 

факторов: природно-климатических, социально-экономических, 

инфраструктурных и экологических. Методологии многокритериального 

анализа (MCDA) активно комбинируются с ML-моделями, включая 

ансамблевые алгоритмы и нейросетевые архитектуры, которые обрабатывают 

признаки из различных источников и обеспечивают более гибкую и точную 

оценку пригодности территорий [2], [15], [22], [24], [25].  

Глубокие нейронные сети и гибридные архитектуры. Среди 

современных подходов особое место занимают гибридные нейросетевые 

модели, способные объединять преимущества различных типов архитектур. 

Одним из наиболее перспективных решений является модель CNN–MLP, 

сочетающая способности свёрточных слоёв (обработка изображений и 

извлечение пространственных признаков) с полносвязными слоями (анализ 

табличных данных) [27], [30], [67], [73].  

Благодаря данной архитектуре гибридные модели CNN–MLP 

демонстрируют высокую точность в задачах пространственной классификации, 

где требуется одновременная обработка спутниковых изображений, цифровых 

моделей рельефа и числовых показателей, описывающих инфраструктурные и 

природные характеристики территории [35], [79], [96]. Применение CNN–MLP 

также показало высокую эффективность в задачах анализа ландшафта, оценки 

пригодности территорий и трёхмерного прогнозирования рельефа, что 

обусловило выбор данной архитектуры в качестве базовой модели в настоящем 

исследовании [30], [67], [79]. 

Обучение без учителя, кластеризация и обнаружение 

аномалий. Методы обучения без учителя играют важную роль на этапе 

предварительного анализа пространственных данных, особенно при 

ограниченном объёме размеченных выборок. Кластеризация — например, 

алгоритмы K-Means и DBSCAN — применяется для выявления однородных 

территориальных зон, что особенно актуально при анализе городской 

морфологии и ландшафтной структуры [5], [117]. Методы снижения 

размерности, такие как PCA и t-SNE, позволяют обнаруживать скрытую 

структуру многомерных пространственных данных, упрощать визуализацию и 

интерпретацию [181]. Такие подходы используются как для самостоятельного 

анализа, так и в качестве шага подготовки признаков, вводимых в гибридные 

архитектуры глубокого обучения типа CNN–MLP [30], [67]. 

Дополнительно, алгоритмы обнаружения аномалий позволяют 

фиксировать редкие или необычные пространственные паттерны, что критично 
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при мониторинге изменений, оценке рисков и выявлении техногенных 

воздействий [180]. 

Проблемы и вызовы. Несмотря на достижения в области 

пространственного анализа, сохраняются ряд вызовов: высокая вычислительная 

сложность при обработке больших массивов разнородных данных; 

необходимость интерпретации результатов моделей, особенно в случае 

«чёрных ящиков»; переобучение на локальных данных и слабая генерализация 

при переносе на другие регионы; проблемы с согласованием пространственного 

разрешения данных из различных источников. 

Тем не менее, развитие гибридных архитектур, таких как CNN–MLP, в 

сочетании с расширением доступных источников пространственных и 

табличных данных, открывает новые возможности для построения 

воспроизводимых и интерпретируемых моделей анализа территориальной 

пригодности. Их интеграция в системы пространственного планирования 

способствует принятию обоснованных решений в области градостроительства и 

устойчивого развития. 

В рамках предварительного анализа структуры данных была проведена 

кластеризация территорий на основе совокупности пространственных 

признаков (NDVI, уклон рельефа, плотность населения и др.). Такой подход 

позволил выделить зоны с однородными характеристиками, что способствовало 

лучшему пониманию пространственной неоднородности и использовалось в 

дальнейшем для интерпретации результатов классификации. Результаты 

кластеризации представлены на Рисунке 1 [5]. 

 

 
 

Рисунок 1 – Кластеризация пространственных объектов по совокупности 

территориальных признаков. 
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1.3 Геоинформационные системы и их роль в территориальном 

планировании 

Геоинформационные системы (ГИС) занимают центральное место в 

современных методах территориального планирования, обеспечивая сбор, 

хранение, обработку, анализ и визуализацию пространственных данных. Их 

применение позволяет формировать цифровые модели территорий, 

моделировать процессы пространственного развития, прогнозировать 

последствия градостроительных решений и повышать качество управления 

земельными ресурсами. 

По определению Международного общества по автоматизированной 

картографии (ICA), ГИС — это совокупность программных, аппаратных, 

информационных и организационных средств, обеспечивающих комплексную 

работу с пространственно распределёнными данными [1]. В контексте 

территориального планирования ГИС служат инструментом для интеграции 

различных типов данных — от кадастровых и топографических до 

климатических, демографических и инфраструктурных. 

Основная функция ГИС в территориальном планировании заключается в 

предоставлении инструментов для принятия обоснованных решений. С их 

помощью органы управления и проектные организации могут проводить 

пространственный анализ пригодности земель, определять зоны ограничений 

(например, экологических или сейсмических), проектировать транспортную и 

инженерную инфраструктуру, а также прогнозировать развитие 

урбанизированных территорий. 

Применение ГИС позволяет перейти от традиционных статических карт к 

динамическим цифровым моделям, обновляемым в реальном времени. 

Например, интеграция с данными дистанционного зондирования (спутниковые 

изображения Sentinel, Landsat, WorldView) обеспечивает возможность 

мониторинга изменений землепользования, выявления несанкционированной 

застройки и анализа последствий природных катастроф. 

Современные ГИС-платформы обеспечивают расширенную 

функциональность, включая поддержку трёхмерного моделирования (3D GIS), 

анализа пространственно-временных данных (4D GIS) и интеграцию с 

расширенными аналитическими инструментами. В частности, современные GIS 

интегрируют пространственное моделирование, дистанционное зондирование, 

облачные вычисления и аналитические методы, что значительно расширяет их 

применение в задачах территориального планирования и анализа 

пространственных данных [1]. Это создаёт основу для концепции Smart 

Planning — интеллектуального территориального планирования на основе 

данных (Data-Driven Spatial Planning). 

Одной из ключевых тенденций последних лет является объединение ГИС 

и машинного обучения для автоматизации аналитических процессов. 

Алгоритмы классификации, кластеризации и прогнозирования всё чаще 

применяются внутри геоинформационных систем, что значительно расширяет 

их аналитический потенциал. 
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Например, в работе “GIS and Machine Learning Integration for Urban Land 

Use Analysis” (Elsevier, 2023) показано, что использование моделей Random 

Forest и Gradient Boosting в сочетании с геопространственными данными 

позволяет повысить точность классификации типов землепользования на 15–

20% по сравнению с традиционными методами [1].  Кроме того, использование 

сверточных нейронных сетей (CNN) в среде ArcGIS Pro и QGIS (через плагины 

Deep Learning Framework) обеспечивает автоматическое выделение объектов на 

спутниковых изображениях, таких как дороги, здания и водоёмы, что ранее 

требовало ручной оцифровки [14]. В рамках данного исследования была 

реализована гибридная модель CNN–MLP, интегрирующая возможности 

пространственной обработки (CNN) с анализом табличных данных (MLP), что 

позволило повысить точность оценки территориальной пригодности при работе 

с данными в среде ГИС. 

Интеграция ГИС и ML также облегчает проведение многокритериальных 

оценок. Например, для выбора площадок под строительство промышленных 

объектов можно использовать алгоритмы ранжирования по совокупности 

факторов — близость к транспортной сети, уклон местности, плотность 

населения, водные ресурсы и т. д. В Казахстане такие подходы находят 

применение в проектах «Цифровой Земельный кадастр» и «Smart Almaty», где 

ГИС объединяется с данными дистанционного мониторинга и моделями 

прогнозирования урбанизации. 

Преимущества:  

- комплексная интеграция пространственных и атрибутивных данных; 

- высокая наглядность и возможность многослойной визуализации; 

- автоматизация анализа больших объемов данных; 

- поддержка принятия решений на основе объективных критериев; 

- возможность интеграции с ML/AI и IoT-системами. 

Ограничения: 

- высокая стоимость лицензий и оборудования (в случае коммерческих 

решений); 

- зависимость от качества исходных данных; 

- сложность интерпретации при работе с многомерными моделями; 

- необходимость высокой квалификации специалистов. 

Тем не менее, при грамотной организации и подготовке данных ГИС 

становятся основой для построения интеллектуальных геоаналитических 

систем, обеспечивающих прозрачность и научную обоснованность решений в 

сфере пространственного планирования. 

Для выбора площадок под строительство промышленных объектов в 

современных системах территориального планирования широко применяются 

алгоритмы многокритериального ранжирования, учитывающие совокупность 

пространственных факторов, таких как близость к транспортной сети, уклон 

рельефа, плотность населения, наличие водных ресурсов и инженерной 

инфраструктуры. Интеграция указанных факторов реализуется в 

геоинформационных системах, обеспечивающих формализованную обработку 

разнородных пространственных данных и их последующий анализ. Общая 
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схема интеграции ГИС и алгоритмов машинного обучения, используемая для 

оценки территориальной пригодности, представлена на рисунке Рисунок 2 [15]. 

 

 
 

Рисунок 2 – Общая концептуальная схема интеграции ГИС и методов 

машинного обучения для анализа пространственных данных и оценки 

пригодности территории 

 

Использование геоинформационных систем в задачах территориального 

анализа обеспечивает комплексную интеграцию пространственных и 

атрибутивных данных, высокую наглядность результатов за счёт многослойной 

визуализации, а также автоматизацию обработки больших объёмов 

информации. Как показано в ряде исследований, сочетание ГИС с методами 

машинного обучения, в частности ансамблевыми алгоритмами и 

нейросетевыми моделями, позволяет существенно повысить точность 

классификации землепользования и функционального зонирования территорий 

по сравнению с традиционными подходами. Пример карты территориальной 

пригодности, сформированной на основе интеграции, ГИС-данных и 

результатов моделирования, приведён на рисунке Рисунок 3 [16]. 

В Республике Казахстан подобные подходы находят практическое 

применение в рамках цифровых инициатив территориального развития, 

включая проекты «Цифровой земельный кадастр» и «Smart Almaty», где 

геоинформационные системы объединяются с данными дистанционного 

зондирования Земли и моделями прогнозирования процессов урбанизации. 

Применение таких решений способствует повышению объективности и 

прозрачности принимаемых управленческих решений в сфере 

пространственного планирования. 
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Рисунок 3 – Карта территориальной пригодности, полученная на основе 

анализа пространственных данных в ГИС 

 

Вместе с тем использование ГИС и методов машинного обучения 

сопровождается рядом ограничений и методологических вызовов. К ним 

относятся высокая стоимость лицензий и специализированного оборудования 

при использовании коммерческих программных решений, зависимость качества 

результатов анализа от точности и полноты исходных данных, а также 

сложность интерпретации результатов при работе с многомерными моделями и 

сложными алгоритмами машинного обучения. Указанные проблемы 

концептуально иллюстрируются на рисунке Рисунок 4, отражающем основные 

вызовы интеграции ГИС и интеллектуальных методов анализа [17]. 
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Рисунок 4– Основные проблемы и вызовы интеграции 

геоинформационных систем и методов машинного обучения в 

территориальном планировании 

 

Тем не менее при корректной организации процессов сбора, подготовки и 

анализа пространственных данных геоинформационные системы становятся 

основой для построения интеллектуальных геоаналитических платформ, 

обеспечивающих научную обоснованность, воспроизводимость и практическую 

применимость решений в задачах территориального и градостроительного 

планирования. Подобный подход подтверждён результатами современных 

исследований, демонстрирующих эффективность интеграции, ГИС и методов 

машинного обучения для анализа пространственных данных[15-17]. 

1.4 Применение алгоритмов машинного обучения в геоаналитике 

Современная геоаналитика представляет собой направление, 

объединяющее методы геоинформационных систем (ГИС), дистанционного 

зондирования Земли (ДЗЗ) и машинного обучения (ML) для анализа 

пространственных и временных закономерностей. Машинное обучение 

позволяет не только автоматизировать интерпретацию геоданных, но и 

значительно повысить точность прогнозов при территориальном планировании, 

экологическом мониторинге и урбанистическом анализе. 

Основная цель применения алгоритмов машинного обучения в 

геоаналитике заключается в построении моделей, способных выявлять скрытые 

закономерности в пространственных данных, предсказывать изменения 

ландшафтов, выявлять аномалии и поддерживать принятие решений. 

Используемые методы делятся на контролируемые (supervised), 

неконтролируемые (unsupervised) и глубокие нейронные модели (deep learning), 

каждая из которых решает определённые задачи анализа геопространственных 

данных. 

Контролируемые алгоритмы, такие как Random Forest, Support Vector 

Machine (SVM), Logistic Regression и Gradient Boosting, широко применяются в 
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задачах классификации землепользования, оценки территориальной 

пригодности и прогнозирования урбанизации [19–21]. Так, в работе Zhou et al. 

(2023) показано, что применение ансамблевых методов, в частности Random 

Forest, позволяет повысить точность классификации типов земного покрова 

более чем на 10 % по сравнению с традиционными статистическими 

подходами, основанными на линейных моделях и экспертных правилах [12]. 

Методы контролируемого обучения демонстрируют высокую эффективность 

при наличии размеченных данных, полученных из спутниковых изображений, 

кадастровых и климатических источников, однако требуют значительных 

вычислительных ресурсов и многоэтапной предварительной обработки 

пространственных данных [19]. 

В задачах, где отсутствует точная разметка данных, широко применяются 

методы неконтролируемого обучения, такие как k-means, DBSCAN и Self-

Organizing Maps (SOM). Данные алгоритмы используются для кластеризации 

территориальных объектов по сходству пространственных и социально-

экономических признаков, включая уровень урбанизации, плотность населения 

и состояние растительного покрова. В исследовании Ma et al. показано, что 

применение плотностной кластеризации на основе 

алгоритма DBSCAN позволяет более точно выявлять зоны урбанизированного 

роста в быстроразвивающихся регионах Китая по сравнению с методами, 

основанными на фиксированном числе кластеров [13]. 

С развитием вычислительных технологий особое значение в анализе 

геопространственных данных приобретают сверточные нейронные сети (CNN) 

и гибридные архитектуры, такие как CNN–MLP, объединяющие обработку 

изображений и табличных признаков. В такой модели CNN извлекает 

пространственные характеристики из спутниковых изображений и цифровой 

модели рельефа, а MLP анализирует инфраструктурные и социально-

экономические показатели, представленные в табличной форме [14]. 

Кроме того, в ряде исследований используются архитектуры типа CNN–

LSTM, позволяющие анализировать временную динамику процессов. Однако в 

рамках данного исследования предпочтение было отдано гибридной модели 

CNN–MLP, как более универсальной для оценки статических 

пространственных признаков. 

Помимо нейронных сетей, активно развиваются архитектуры Graph 

Neural Networks (GNN), применяемые для анализа пространственных 

зависимостей между объектами (например, транспортной сетью и жилыми 

массивами). Эти подходы особенно актуальны для моделирования 

пространственной взаимосвязанности в системах «умного города» (Smart City). 

Несмотря на достигнутые успехи, применение методов машинного 

обучения в геоаналитике и территориальном планировании сопровождается 

рядом существенных ограничений. К числу ключевых проблем относятся 

потребность в больших объёмах качественно размеченных данных, различие 

пространственных и временных масштабов исходных источников, а также 

высокая вычислительная сложность современных моделей. Дополнительной 

сложностью является ограниченная интерпретируемость глубоких нейронных 
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сетей, которые зачастую функционируют как «чёрные ящики», что затрудняет 

обоснование полученных результатов в контексте принятия градостроительных 

решений. 

В связи с этим в последние годы активно развиваются методы 

интерпретируемого машинного обучения (Explainable AI, XAI), такие как LIME 

и SHAP, позволяющие анализировать вклад отдельных признаков в итоговое 

решение модели и повышать доверие к результатам пространственного 

прогнозирования. Одновременно возрастает интерес к подходам обучения с 

ограниченным числом примеров (Few-Shot Learning) и переноса обучения 

(Transfer Learning), что особенно актуально для регионов с недостаточной 

обеспеченностью геоданными и ограниченными возможностями полевой 

валидации. 

Практическая эффективность современных методов подтверждается 

рядом прикладных исследований. Так, для оценки пригодности земель в 

странах Центральной Азии использование ансамблевых алгоритмов Random 

Forest в сочетании с данными Copernicus DEM позволило достичь точности 

классификации до 89%. В задачах прогнозирования роста городской застройки 

Алматы применение гибридных моделей CNN–LSTM на основе временных 

рядов спутниковых данных Sentinel-2 обеспечило точность прогнозирования на 

уровне 92%, что подчёркивает перспективность интеграции пространственного 

и временного анализа. Кроме того, классификация типов почв Казахстана с 

использованием данных MODIS и климатических параметров на основе 

алгоритмов SVM продемонстрировала улучшение ключевых метрик качества 

более чем на 15% по сравнению с традиционными методами. 

 

 
 

Рисунок 5 – Архитектура гибридной модели CNN–MLP для анализа 

геопространственных данных 

 



 

27 

Типовая схема интеграции сверточных нейронных сетей (CNN) с 

полносвязными слоями (MLP) для анализа геопространственных данных, 

объединяющая обработку изображений и табличных признаков, представлена 

на Рисунке 5. Таким образом, применение гибридных моделей CNN–MLP в 

геоаналитике обеспечивает высокую точность и интерпретируемость 

результатов, что делает их эффективным инструментом для задач 

пространственного моделирования и территориального планирования. [19]. 

1.5 Методы обработки и нормализации геопространственных 

данных 

Обработка и нормализация геопространственных данных являются 

необходимыми этапами в построении интеллектуальных систем 

территориального анализа. Качество и точность аналитических моделей 

напрямую зависят от корректности предварительной обработки данных, 

включающей очистку, согласование, фильтрацию, устранение выбросов и 

приведение параметров к единой системе координат и шкале измерений. 

Геопространственные данные, используемые в территориальном 

планировании, могут быть получены из различных источников — спутников 

дистанционного зондирования (Sentinel, Landsat, MODIS), цифровых моделей 

рельефа (DEM), кадастровых баз, климатических измерений и статистических 

наблюдений. Такие данные отличаются по формату, пространственному 

разрешению и временной дискретности, что требует их унификации перед 

анализом. 

Этап предварительной обработки включает фильтрацию шумов, 

исправление артефактов и заполнение пропусков. Для устранения шумов в 

спутниковых снимках применяются фильтры Гаусса, медианный фильтр и 

адаптивные алгоритмы размытия. В случае временных рядов (например, 

климатических данных) используется интерполяция на основе сплайнов или 

алгоритмы скользящего среднего. 

Важной процедурой является геометрическая и радиометрическая 

коррекция спутниковых изображений. Геометрическая коррекция устраняет 

искажения, вызванные рельефом местности, положением спутника и углом 

съёмки. Радиометрическая коррекция направлена на нормализацию яркостных 

значений пикселей с учётом влияния атмосферы и освещённости. Такие методы 

реализованы, например, в программных комплексах SNAP (ESA Sentinel 

Toolbox) и ENVI. 

После первичной очистки и коррекции данные приводятся к единому 

масштабу и системе координат (обычно WGS84 или UTM). Для корректного 

обучения моделей машинного обучения необходимо также нормализовать 

числовые признаки, чтобы значения различных параметров (например, высота, 

NDVI, плотность населения, температура) находились в сопоставимых 

диапазонах. 

На практике применяются следующие подходы: 

- Min–Max нормализация: 
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      (1) 

 

используется, если важно сохранить распределение данных в пределах 

[0,1]; 

- Z-score стандартизация: 

       (2) 

 

применяется при необходимости устранения смещения и разницы в 

масштабах между параметрами; 

- Log-трансформация — для стабилизации дисперсии в данных с 

экспоненциальным распределением (например, плотность застройки или 

интенсивность освещённости). 

При объединении данных из различных источников часто возникает 

проблема несовпадения пространственного разрешения. Например, 

климатические данные могут иметь шаг сетки 1 км, а спутниковые снимки — 

10 м. Для согласования разрешений применяются методы пространственной 

интерполяции: 

- Кригинга (Kriging) — геостатистический метод, учитывающий 

пространственную автокорреляцию; 

- Интерполяция обратных расстояний (IDW) — взвешенное усреднение 

по ближайшим точкам; 

- Сплайн-интерполяция — обеспечивает гладкое приближение 

поверхностей. 

Эти методы позволяют преобразовывать данные в единую сетку, 

обеспечивая корректное наложение и сопоставимость пространственных слоёв. 

На заключительном этапе подготовки данных проводится выделение 

наиболее информативных признаков. Для этого используются методы анализа 

главных компонент (PCA), факторный анализ или автоматизированные 

процедуры feature selection в библиотеках Scikit-learn и TensorFlow. Это 

позволяет сократить размерность данных, уменьшить шум и повысить 

устойчивость моделей. 

Также часто выполняется расчёт вторичных индексов, отражающих 

характеристики территории, например: 

NDVI (Normalized Difference Vegetation Index) — оценка растительного 

покрова. Нормализованный разностный вегетационный индекс (NDVI) является 

базовым спектральным показателем состояния растительного покрова и 

широко применяется в задачах мониторинга землепользования, оценки 

биомассы и фотосинтетической активности растительности. Индекс 

рассчитывается по формуле: 

 

,     (3) 
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где NIR и RED — отражательная способность в ближнем инфракрасном и 

красном диапазонах соответственно; для данных Sentinel-2, как правило, 

используются каналы B8 (NIR) и B4 (RED).  

Значения NDVI варьируются от –1 до +1: отрицательные и близкие к 

нулю значения соответствуют водным поверхностям, застроенным и 

оголённым территориям, тогда как высокие значения (0,5–0,9) характерны для 

плотного, здорового растительного покрова. В контексте оценки 

территориальной пригодности NDVI позволяет количественно выделять 

устойчивые зелёные зоны, определять степень антропогенной трансформации 

ландшафта и использовать полученные слои в качестве входных признаков для 

гибридных индексов и моделей машинного обучения, обеспечивая тем самым 

интеграцию данных дистанционного зондирования с градостроительным 

анализом. 

 

 
 

Рисунок 6 – Схематическое объяснение принципа нормализованного 

разностного вегетационного индекса NDVI (a) и пример картографирования 

состояния растительного покрова по данным NDVI для урбанизированной 

прибрежной территории (b) 

 

На рисунке 6 представлена иллюстрация принципа расчёта и практического 

использования нормализованного разностного вегетационного индекса NDVI. 

На схеме слева (a) показаны два дерева с различным физиологическим 

состоянием: здоровое и ослабленное. Для каждого варианта приведены доли 

отражённого излучения в красном (visible) и ближнем инфракрасном (near 

infrared) диапазонах, а также рассчитанные значения NDVI. Здоровое дерево 

поглощает значительную часть видимого красного излучения и интенсивно 

отражает ближний ИК-диапазон, что приводит к высоким значениям NDVI 

(например, 0,72). Ослабленная растительность, напротив, хуже поглощает 

красный диапазон и отражает меньше ближнего ИК-излучения, что выражается 

в заметно меньшем значении NDVI (например, 0,14). Справа (b) приведён 
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пространственный NDVI-растр для прибрежной урбанизированной территории. 

Цветовая шкала показывает распределение значений NDVI: низкие и 

отрицательные значения (оранжево-красные тона) соответствуют застроенным 

участкам и поверхностям без растительного покрова, средние значения (светло-

зелёные) — участкам с разреженной или деградированной растительностью, а 

высокие значения (тёмно-зелёные) — зонам с плотной, здоровой 

растительностью. Таким образом, пример на рисунке демонстрирует, как 

индекс NDVI позволяет количественно оценивать состояние растительного 

покрова и выделять зелёные и антропогенно нарушенные территории в рамках 

дистанционного мониторинга. 

NDBI (Normalized Difference Built-up Index) — степень урбанизации. 

Нормализованный разностный индекс застройки (NDBI, Normalized Difference 

Built-up Index) используется для количественной оценки степени урбанизации 

территории и выделения застроенных поверхностей по данным дистанционного 

зондирования. Индекс рассчитывается по формуле: 

 

,     (4) 

 

где SWIR и NIR — отражательная способность в диапазонах коротковолнового 

инфракрасного и ближнего инфракрасного излучения соответственно (для 

Sentinel-2 обычно применяются каналы B11/B12 и B8).  

Застроенные объекты (бетон, асфальт, кровли зданий) характеризуются 

более высокой отражательностью в SWIR по сравнению с NIR, что приводит к 

положительным значениям NDBI, тогда как водные и растительные 

поверхности демонстрируют нулевые или отрицательные значения индекса. В 

задачах территориального планирования NDBI позволяет формировать 

пространственно непрерывные карты урбанизированности, выявлять ядра и 

коридоры застройки, оценивать степень уплотнения городской ткани и 

использовать полученные показатели в качестве входных признаков для 

гибридных моделей пригодности территории и алгоритмов машинного 

обучения. 
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Рисунок 7 – Пространственно-временная динамика урбанизированных и 

природных территорий, выявленная по индексу NDBI 

 

На рисунке 7 представлено типичное применение нормализованного 

разностного индекса застройки NDBI для анализа динамики урбанизации: на 

многовременных картах за 2016, 2018 и 2020 гг. показано пространственное 

перераспределение классов землепользования (лес, застроенные территории, 

растительность, оголённые земли, водные объекты). Красным цветом выделены 

пиксели с высокими значениями NDBI, соответствующие застроенным 

площадям; зелёные и жёлтые тона характеризуют участки с доминированием 

растительного покрова и оголённых поверхностей с более низкими или 

отрицательными значениями индекса. Сопоставление трёх временных срезов 

демонстрирует устойчивый рост площади урбанизированных территорий и 

фрагментацию естественных ландшафтов, что выражается в увеличении доли 

пикселей класса Built-up и сокращении площадей лесных и иных растительных 

категорий. Таким образом, пример наглядно показывает, как NDBI, 

рассчитанный по мультивременным спутниковым данным и использованный в 

процедуре классификации, позволяет количественно оценивать темпы и 

направления расширения городской застройки, а также интегрировать 

результаты в системы территориального планирования и мониторинга 

антропогенной нагрузки. 

NDWI (Normalized Difference Water Index) — наличие водных объектов. 

Нормализованный разностный водный индекс (NDWI, Normalized Difference 

Water Index) используется для выделения и количественной оценки водных 



 

32 

объектов по данным оптического дистанционного зондирования. В 

классической формулировке McFeeters индекс рассчитывается по выражению: 

 

     (5) 

 

где GREEN и NIR — отражательная способность в зелёном и ближнем 

инфракрасном диапазонах соответственно (для Sentinel-2, как правило, 

применяются каналы B3 и B8).  

Водные поверхности характеризуются высокой отражательностью в 

зелёном диапазоне и сильным поглощением в ближнем ИК, что приводит к 

положительным значениям NDWI, тогда как для растительности, оголённого 

грунта и застроенных территорий индекс принимает нулевые или 

отрицательные значения. Диапазон значений NDWI составляет от –1 до +1, при 

этом пороговые значения подбираются эмпирически в зависимости от сенсора 

и условий съёмки. В задачах территориального планирования и оценки 

пригодности территорий NDWI позволяет формировать маски водных 

объектов, уточнять конфигурацию береговой линии, выявлять небольшие 

водоёмы и зоны периодического подтопления, а также использовать 

полученные слои в составе гибридных индексов и моделей машинного 

обучения для комплексного учёта гидрологического фактора. 

 

 
 

Рисунок 8 – Пространственно-временная динамика водных объектов и 

прибрежных территорий, выявленная по индексу NDWI 

 

На рисунке 8 приведён пример использования нормализованного 

разностного водного индекса NDWI для картографирования водных объектов и 

прибрежных зон за два временных среза. На основе расчёта NDWI по 

мультиспектральным спутниковым данным выполнена классификация 

территории на три класса: водные объекты (синим цветом), участки с 
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растительным покровом (зелёным) и открытые пространства/оголённые 

поверхности (жёлтым). Сравнение карт позволяет визуально оценить 

изменения конфигурации русла и поймы реки, расширение или сокращение 

площадей водных зеркал, а также перераспределение растительности и 

открытых территорий в пределах прибрежной зоны. Тем самым пример 

демонстрирует, что NDWI не только обеспечивает надёжное выделение водных 

объектов за счёт положительных значений индекса, но и может использоваться 

для анализа динамики гидрологического режима и береговой линии, что 

является важным элементом комплексной оценки территориальной 

пригодности и рисков подтопления. 

Комбинация этих индексов используется при моделировании 

пригодности земель, мониторинге застройки и анализе динамики урбанизации. 

Подготовленные пространственные слои и нормализованные табличные 

признаки были интегрированы в архитектуру гибридной модели CNN–MLP, 

где спутниковые изображения подавались на вход свёрточного энкодера, а 

табличные показатели — на полносвязную часть. Такая предварительная 

обработка данных обеспечила высокую точность и устойчивость моделей 

территориального анализа. 

Таким образом, применение современных методов обработки и 

нормализации пространственных данных обеспечивает формирование 

унифицированного и информативного признакового пространства, что является 

необходимым условием для успешного обучения и применения гибридных 

моделей, таких как CNN–MLP, в задачах территориального анализа и 

планирования.  

1.6 Нейросетевые модели для анализа спутниковых изображений 

Современные методы анализа спутниковых изображений активно 

развиваются благодаря внедрению нейросетевых архитектур, способных 

эффективно извлекать пространственные и спектральные признаки из 

многомерных данных дистанционного зондирования Земли. Использование 

нейронных сетей в геоаналитике позволяет значительно повысить точность 

классификации, сегментации и прогнозирования территориальных изменений 

по сравнению с традиционными статистическими подходами. Применение 

технологий глубокого обучения (Deep Learning) обеспечивает возможность 

автоматического выделения объектов, определения границ урбанизированных 

зон, мониторинга изменений растительного покрова и оценки последствий 

антропогенного воздействия на природные территории. 

Сверточные нейронные сети (CNN) являются базовым инструментом 

анализа спутниковых изображений. Они позволяют выявлять локальные 

пространственные закономерности, текстурные элементы и границы объектов. 

Классическая архитектура U-Net доказала свою эффективность при решении 

задач семантической сегментации спутниковых данных, обеспечивая высокую 

точность классификации типов землепользования и выделения 

урбанизированных зон. Согласно результатам исследования Zhang и соавторов 

(Remote Sensing Letters, 2023), применение модели U-Net на снимках Sentinel-2 
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позволило достичь точности классификации 93,4% при идентификации 

сельскохозяйственных и городских территорий. Эти технологии применяются 

для автоматической генерации карт землепользования и мониторинга динамики 

антропогенных трансформаций. 

Для анализа пространственно-временных зависимостей всё чаще 

применяются гибридные модели, объединяющие сверточные и рекуррентные 

архитектуры (CNN–LSTM). Такой тип моделей позволяет не только выделять 

пространственные признаки с помощью CNN, но и учитывать временную 

динамику изменений, что особенно важно при анализе сезонных процессов, 

урбанизации и деградации земель. В работе Zhu и др. (IEEE Geoscience and 

Remote Sensing Letters, 2022) показано, что использование CNN–LSTM 

обеспечивает точность прогнозирования изменений землепользования выше на 

10–15% по сравнению с традиционными моделями машинного обучения. 

В последние годы значительное внимание в задачах геоаналитики и 

дистанционного зондирования уделяется архитектурам на основе механизма 

внимания, или трансформерам (Transformers). Визуальные трансформеры 

(Vision Transformers, ViT) демонстрируют способность выявлять сложные 

пространственные взаимосвязи без применения сверточных операций, 

используя механизм самовнимания (self-attention), что способствует 

повышению интерпретируемости моделей и качества анализа спутниковых 

данных при решении задач классификации и сегментации. 

Так, модель Swin Transformer, предложенная Li и соавторами (2023), 

показала высокую эффективность при анализе многоспектральных данных 

Sentinel-2, обеспечив точность классификации ландшафтных и 

урбанизированных территорий на уровне до 95 %, что подтверждает 

перспективность применения трансформерных архитектур в задачах 

территориального планирования и мониторинга землепользования [16]. 

Использование нейронных моделей в управлении пространственным 

развитием позволяет создавать интеллектуальные геоаналитические 

платформы, способных автоматически формировать карты пригодности земель, 

определять приоритетные зоны застройки и прогнозировать пространственное 

развитие городов. В Республике Казахстан в рамках государственной 

программы «Цифровой Казахстан» и стратегии «Smart City» реализуются 

подходы, направленные на интеграцию геоинформационных систем, 

спутниковых данных и аналитических платформ для мониторинга городской 

застройки, выявления несанкционированных строительных объектов и оценки 

экологического состояния территорий [17, 18]. Практическое применение 

геоаналитических методов и данных дистанционного зондирования в задачах 

городского мониторинга продемонстрировано в исследованиях, посвящённых 

анализу строительной активности и состоянию зеленых насаждений в городах 

Казахстана [19, 20]. 

Таким образом, нейросетевые модели стали ключевым инструментом 

пространственного анализа, обеспечивающим высокую степень автоматизации 

и объективности при работе с большими массивами спутниковых данных. Их 

применение позволяет не только повысить точность классификации и 
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прогнозирования, но и формировать основу для внедрения концепции 

интеллектуального территориального планирования, ориентированного на 

устойчивое развитие и рациональное использование земельных ресурсов. 

Помимо моделей, учитывающих временную динамику (CNN–LSTM) и 

трансформерных архитектур, высокую практическую значимость представляют 

гибридные модели CNN+MLP, совмещающие обработку спутниковых 

изображений с анализом табличных признаков — таких как плотность 

населения, высота, удалённость от инфраструктурных объектов и др. В данной 

работе в качестве основной нейросетевой архитектуры была реализована 

гибридная модель CNN+MLP, которая показала высокую эффективность в 

задачах пространственного прогнозирования и оценки пригодности земель. 

Такой подход позволяет не только учитывать визуальные особенности 

территории, но и интегрировать численные параметры, расширяя возможности 

геоаналитики в контексте территориального планирования. 

1.7 Методы интеграции климатических и социально-

экономических факторов 

Современные системы территориального планирования требуют 

комплексного учёта природно-климатических, инфраструктурных и социально-

экономических факторов, оказывающих влияние на развитие территорий. 

Интеграция этих разнородных данных обеспечивает возможность более 

точного анализа пространственных закономерностей и построения прогнозных 

моделей устойчивого развития. В основе таких подходов лежит объединение 

климатических индексов (температура, осадки, влажность, скорость ветра, 

солнечная радиация) с социально-экономическими показателями (плотность 

населения, занятость, уровень урбанизации, транспортная доступность и 

уровень доходов населения). 

Климатические данные традиционно используются при оценке 

природных рисков, прогнозировании деградации земель, планировании 

сельскохозяйственного производства и формировании зон ограничения 

строительства. В территориальном анализе источниками климатических 

данных являются метеорологические станции, базы Copernicus Climate Data 

Store, NOAA, ERA5, а также спутниковые наблюдения MODIS и Sentinel-5P. 

Эти данные интегрируются в ГИС-системы для построения пространственно-

временных карт, отражающих динамику климатических параметров. 

Применение методов машинного обучения позволяет выявлять нелинейные 

зависимости между климатическими характеристиками и пространственными 

паттернами урбанизации, что особенно важно для регионов с выраженными 

сезонными колебаниями климата. 

Социально-экономические факторы представляют собой не менее 

значимый компонент пространственного анализа. Показатели демографической 

структуры, плотности населения, транспортной обеспеченности и 

инфраструктурного развития используются для оценки территориальной 

привлекательности и прогнозирования миграционных потоков. Эти данные 

формируются на основе национальных статистических баз, переписей 
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населения, мобильных операторов и открытых источников, таких как 

OpenStreetMap и WorldPop. Их интеграция с геопространственными и 

климатическими данными позволяет формировать многофакторные модели 

территориальной пригодности для размещения жилых и промышленных 

объектов [21]. 

Процесс интеграции данных предполагает нормализацию показателей, их 

пространственное совмещение и последующую обработку с использованием 

алгоритмов машинного обучения. На практике применяются ансамблевые 

модели, такие как Random Forest и Gradient Boosting, которые эффективно 

обрабатывают гетерогенные данные, обеспечивая высокую точность прогнозов. 

В последние годы получили развитие подходы на основе нейронных сетей, где 

пространственные климатические признаки объединяются с социально-

экономическими данными в единый обучающий набор в единый обучающий 

набор, пригодный для подачи в архитектуру гибридной нейросети, 

учитывающей как пространственные, так и табличные данные. Примером 

является исследование Prodanova et al. (2024) в журнале Environmental 

Modelling & Software, где интеграция климатических индексов и 

пространственных данных в модели позволила повысить точность анализа 

ландшафтных контуров и их взаимосвязей с географическими факторами 

(повышение точности более 15 % в отдельных показателях) при оценке 

пространственных паттернов на основе климатических параметров и 

геопространственной модели прогнозирования территориальных изменений 

[22]. 

В рамках данного исследования климатические и социально-

экономические показатели были нормализованы и поданы в полносвязную 

часть (MLP) гибридной модели CNN–MLP. Это позволило объединить 

визуальные признаки, извлечённые из спутниковых снимков сверточной сетью 

(CNN), с табличными данными территориального развития. Такой подход 

обеспечил комплексный анализ гетерогенных факторов и способствовал 

повышению интерпретируемости результатов. 

В Казахстане, где между регионами наблюдаются существенные различия 

в природных и демографических условиях, особенно важно комплексное 

объединение климатических и социально-экономических данных. Такие модели 

позволяют одновременно учитывать климатические риски (засухи, дефицит 

воды, экстремальные температуры) и факторы развития — рост населения, 

расширение инфраструктуры, промышленное освоение. Полученные 

результаты применяются для обоснованного территориального зонирования, 

прогноза урбанизации и рационального использования природных ресурсов. 

Таким образом, интеграция климатических и социально-экономических 

факторов в рамках единой архитектуры способствует формированию 

интеллектуальных систем пространственного анализа, способных учитывать 

региональные различия и адаптироваться к условиям устойчивого 

территориального развития. 
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Выводы по первой главе 

В первой главе представлен всесторонний обзор современных методов 

пространственного анализа в системах территориального планирования. 

Установлено, что эффективное управление территориальным развитием 

требует комплексного подхода, включающего правовые, экономические, 

экологические и технологические аспекты. Особое внимание уделено 

трансформации территориального планирования в условиях цифровизации и 

урбанизации, а также роли геоинформационных систем (ГИС) в обеспечении 

интеграции пространственных, климатических и социально-экономических 

данных. 

Проанализированы современные подходы к пространственной аналитике, 

включая методы машинного обучения и глубокого обучения. Показано, что 

традиционные геостатистические методы постепенно уступают место 

интеллектуальным алгоритмам, позволяющим выявлять сложные 

закономерности в многомерных геоданных. Основные акценты сделаны на 

гибридных архитектурах, таких как CNN–MLP, которые сочетают 

преимущества свёрточных нейросетей для обработки изображений и 

полносвязных слоёв для анализа табличных и инфраструктурных данных. 

Отдельное внимание уделено методам обработки и нормализации 

геоданных, включая фильтрацию шумов, пространственную интерполяцию, 

нормализацию признаков и расчёт индексов (NDVI, NDBI, NDWI), 

необходимых для формирования унифицированного признакового 

пространства. Подчёркнута важность предварительной подготовки данных как 

ключевого этапа построения корректных и устойчивых моделей. 

Также рассмотрены возможности применения современных нейросетевых 

моделей, включая CNN, LSTM, CNN–LSTM, Vision Transformers (ViT), в 

задачах анализа спутниковых изображений, мониторинга изменений 

землепользования и оценки территориальной пригодности. Подчёркнута роль 

гибридной модели CNN–MLP как основной архитектуры данного 

исследования, обеспечивающей интеграцию визуальных и числовых 

пространственных признаков, что делает её особенно эффективной для задач 

классификации и ранжирования территорий по степени пригодности. 

Наконец, показано, что включение климатических и социально-

экономических факторов в состав обучающих данных существенно повышает 

точность и интерпретируемость моделей. Современные методы интеграции 

гетерогенных данных в рамках нейросетевых архитектур открывают новые 

возможности для реализации интеллектуальных систем территориального 

планирования и прогнозирования устойчивого развития. 

Таким образом, первая глава заложила теоретическую основу 

исследования, обосновала выбор CNN–MLP как основной модели и определила 

ключевые направления для последующей реализации и валидации 

предложенной архитектуры на реальных пространственных данных. 
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2 РАЗРАБОТКА МОДЕЛИ И АЛГОРИТМОВ АНАЛИЗА 

ПРОСТРАНСТВЕННЫХ ДАННЫХ 

2.1 Постановка задачи и математическое описание модели 

Современные задачи территориального планирования требуют 

построения моделей, способных учитывать большое количество 

пространственных, климатических и социально-экономических факторов. 

Основная цель математического моделирования в данной работе заключается в 

создании алгоритма анализа и прогнозирования территориальной пригодности 

на основе многомерных геопространственных данных с использованием 

методов машинного обучения. 

Рассмотрим множество наблюдений, соответствующих различным 

территориям региона: 

 

 ,     (6) 

 

где xi = (xi1, xi2, ..., xin) — вектор признаков, включающий геопространственные, 

климатические и социально-экономические параметры территории (например, 

высота, NDVI, плотность населения, температура, расстояние до 

инфраструктуры), а yi — целевая переменная, характеризующая пригодность 

территории (например, класс пригодности или числовой индекс). 

Для построения модели используется функция отображения 

f: X → Y, которая приближает зависимость между пространственными 

признаками и показателями пригодности. В рамках машинного обучения 

данная зависимость аппроксимируется параметрической функцией fθ(x), где θ 

— набор параметров модели, подбираемых в процессе обучения. 

Задача обучения формулируется как минимизация функции потерь: 

 

,      (7) 

 

где L(·) — функция ошибки, измеряющая расхождение между предсказанными 

и истинными значениями.  

В зависимости от типа задачи могут применяться различные функции 

потерь — среднеквадратическая ошибка (MSE) для регрессии или 

бинарная/категориальная кросс-энтропия для классификации. В качестве 

функции активации в скрытых слоях модели используется ReLU, а на 

выходном слое — Softmax (для задач классификации) или линейная активация 

(для регрессии). 

В данной работе параметрическая функция  реализуется в виде 

гибридной нейросетевой архитектуры CNN–MLP, где сверточный блок (CNN) 

отвечает за извлечение пространственных признаков, а полносвязный блок 

(MLP) — за обработку табличных данных и формирование итогового прогноза. 

Особенность анализа пространственных данных заключается в том, что 

входные признаки xi могут быть пространственно коррелированными. Для 
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учета пространственной зависимости вводится понятие весовой матрицы 

смежности 

 

,      (8) 

 

где wij ≠ 0, если территория i имеет общую границу или принадлежит к 

соседней зоне.  

Тогда модель может быть дополнена пространственным регрессионным 

членом: 

 

y = ρWy + Xβ + ε,     (9) 

 

где ρ — коэффициент пространственной автокорреляции, β — вектор 

параметров регрессии, ε — случайная ошибка.  

Такая форма описывает пространственные взаимодействия между 

смежными регионами, что особенно важно при моделировании 

урбанизационных процессов и распространении антропогенных воздействий. 

Несмотря на эффективность линейных пространственных моделей, в 

данной работе пространственные зависимости моделируются с помощью 

сверточного блока нейросети (CNN), который автоматически обучает фильтры, 

способные улавливать локальные зависимости между соседними участками на 

спутниковых изображениях. Фильтры в сверточных слоях обучаются 

автоматически и позволяют выявлять важные текстурные признаки, границы 

объектов и пространственные паттерны, характерные для урбанизированных и 

природных ландшафтов. 

В рамках нейросетевого подхода пространственная модель реализуется с 

помощью сверточных и полносвязных слоев, где каждый слой выполняет 

преобразование входных признаков в более абстрактные пространственные 

представления. Сверточные нейронные сети (CNN) применяются для 

извлечения локальных признаков с географических карт и спутниковых 

изображений, а многослойный персептрон (MLP) — для обработки табличных 

параметров (климатических, демографических, инфраструктурных). Таким 

образом, итоговая архитектура объединяет визуальные и числовые источники 

данных в единую обучающую систему. 

 

,    (10) 

 

где и  — выходные векторные представления из соответствующих 

ветвей модели. 
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Рисунок 9 – Архитектура гибридной нейросетевой модели (CNN-MLP) 

для оценки территориальной пригодности 

 

Для наглядного представления логики обработки данных на рис. 9 

приведена схема архитектуры разработанной нейросетевой модели. Входной 

поток растровых данных (спутниковые изображения, карты индексов 

NDVI/NDBI/NDWI, цифровая модель рельефа) поступает в сверточный блок 

CNN, включающий последовательность сверточных и субдискретизирующих 

(pooling) слоёв, формирующих компактное пространственное представление 

сцены. Параллельно табличные признаки (климатические параметры ERA5, 

расстояния до инфраструктуры, кадастровые и демографические показатели) 

подаются в многослойный персептрон (MLP), реализующий нелинейное 

преобразование признакового пространства. На последнем этапе полученные 

векторные представления из CNN- и MLP-ветвей объединяются и передаются в 

общие полносвязные слои, формирующие итоговый прогноз класса/индекса 

территориальной пригодности. Такая гибридная архитектура позволяет 

совместно учитывать как пространственную структуру ландшафта, так и 

атрибутивные характеристики территории, что особенно важно для задач 

территориального планирования в условиях сложной городской морфологии. 

Результатом моделирования является функция fθ(x), позволяющая 

оценивать уровень территориальной пригодности и прогнозировать изменения 

при различных сценариях климатических или социально-экономических 

условий. Математическая формализация предложенной модели обеспечивает 

возможность её последующей реализации в программной среде Python с 

использованием библиотек TensorFlow, Scikit-learn и GDAL для интеграции с 

геоинформационными системами. 

2.2 Цифровизация генерального плана города и формирование 

эталонной пространственной разметки 

Генеральный план города является основным нормативным документом 

территориального планирования, определяющим функциональное зонирование 

территории и направления ее долгосрочного развития. Он формируется на 
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основе комплексных экспертных решений в области градостроительства, 

землепользования и размещения инженерной инфраструктуры и служит 

базовым инструментом при принятии управленческих и проектных решений на 

различных уровнях территориального управления. 

В контексте интеллектуального анализа пространственных данных 

генеральный план может рассматриваться как эталонная схема 

территориального зонирования, отражающая согласованное экспертное 

представление о допустимых и приоритетных направлениях использования 

территории. Такое представление позволяет использовать данные генерального 

плана не только в нормативно-правовом, но и в вычислительном аспекте, в 

частности в качестве исходной разметки для анализа, моделирования и оценки 

территориальной пригодности. 

С точки зрения научных исследований генеральный план представляет 

собой формализованный результат многокритериальной экспертной оценки 

территории, выполненной с учетом природных, социально-экономических и 

инфраструктурных факторов. Это делает его обоснованным референсным 

источником при разработке и валидации моделей машинного обучения, 

направленных на анализ и прогнозирование пространственной пригодности 

территорий в задачах территориального планирования. 

Генеральный план города Алатау, утверждённый постановлением 

Правительства Республики Казахстан № 388, используется в настоящем 

исследовании в качестве нормативного и экспертного эталона 

территориального зонирования, применяемого для формирования обучающей и 

валидационной разметки в задачах геоаналитики и машинного обучения 

(Рисунок 10) [188]. В настоящей работе генеральный план используется как 

целевая разметка (ground truth) при обучении гибридной архитектуры CNN–

MLP, объединяющей визуальные признаки (извлекаемые из спутниковых 

изображений с помощью сверточных слоев) и табличные атрибутивные 

параметры. 

Для использования генерального плана в задачах машинного обучения 

была выполнена его цифровизация, направленная на преобразование 

картографических материалов в формализованное цифровое пространственное 

представление. Исходные материалы генерального плана, представленные в 

формате PDF и растровых изображений, не содержали координатной привязки 

и не могли быть непосредственно использованы в геоинформационном и 

вычислительном анализе, что обусловило необходимость их предварительной 

обработки в среде геоинформационной системы. 

В рамках данного этапа параллельно использовалась вычислительная 

среда Jupyter Notebook, в которой был реализован программный модуль 

предварительной обработки геоданных. Пространственные данные, включая 

спутниковые изображения Sentinel-2, цифровые модели рельефа (DEM) и 

векторные маски функциональных зон, были обработаны с применением 

специализированных библиотек Python. В частности, 

библиотека rasterioиспользовалась для чтения и записи GeoTIFF-

изображений, numpy — для манипуляции многомерными массивами 
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данных, geopandas — для работы с векторными слоями и пространственными 

операциями, а matplotlib — для визуализации промежуточных результатов. 

Такой подход обеспечил автоматизацию процесса подготовки данных и 

повысил воспроизводимость анализа. 

На этапе геопривязки исходные картографические материалы были 

загружены в геоинформационную систему QGIS, после чего выполнено 

геореференцирование на основе контрольных точек, соответствующих 

устойчивым объектам местности, таким как пересечения дорожной сети, русла 

рек и характерные элементы застройки. Геопривязка осуществлялась в единой 

системе координат, обеспечивающей пространственную согласованность 

цифровизированного генерального плана с другими геопространственными 

слоями, используемыми в исследовании. 

После выполнения геопривязки была проведена векторизация 

функциональных зон генерального плана. Для этого был создан векторный 

слой полигонального типа, в котором границы функциональных зон 

оцифровывались вручную в соответствии с картографическими материалами 

генерального плана. Каждому полигону были присвоены атрибутивные 

параметры, определяющие его принадлежность к соответствующему классу 

территориальной пригодности, что позволило сформировать 

структурированную цифровую модель генерального плана, пригодную для 

последующего анализа и использования в задачах машинного обучения. 

На этапе геопривязки исходные картографические материалы были 

загружены в геоинформационную систему QGIS, после чего выполнено 

геореференцирование на основе контрольных точек, соответствующих 

устойчивым объектам местности, таким как пересечения дорожной сети, русла 

рек и характерные элементы застройки. Геопривязка осуществлялась в единой 

системе координат, обеспечивающей пространственную согласованность 

цифровизированного генерального плана с другими геопространственными 

слоями, используемыми в исследовании. 

После выполнения геопривязки была проведена векторизация 

функциональных зон генерального плана. Для этого был создан векторный 

слой полигонального типа, в котором границы функциональных зон 

оцифровывались вручную в соответствии с картографическими материалами 

генерального плана. Каждому полигону были присвоены атрибутивные 

параметры, определяющие его принадлежность к соответствующему классу 

территориальной пригодности, что позволило сформировать 

структурированную цифровую модель генерального плана, пригодную для 

последующего анализа и использования в задачах машинного обучения. 
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Рисунок 10 – Концептуальная схема использования генерального плана 

как эталонного источника данных в задачах территориального планирования и 

машинного обучения (Фрагмент генерального плана города Алатау как 

нормативный источник эталонного территориального зонирования) 
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В рамках исследования территория была классифицирована на пять 

обобщенных классов территориальной пригодности, что позволило обеспечить 

соответствие нормативным документам территориального планирования и 

одновременно упростить использование данных в задачах машинного 

обучения. Применение обобщенной классификации направлено на снижение 

избыточной детализации функционального зонирования генерального плана и 

формирование устойчивых и интерпретируемых классов, отражающих 

принципиальные различия в возможностях и ограничениях использования 

территории. 

Класс зон, запрещенных к застройке, включает территории с жесткими 

природными или нормативными ограничениями, такими как водные объекты, 

охранные зоны и участки с выраженными уклонами рельефа. К зонам низкой 

пригодности отнесены территории, где застройка теоретически возможна, 

однако требует значительных инженерных, технологических или 

экономических затрат. Зоны средней пригодности характеризуются 

допустимостью застройки при соблюдении стандартных инженерных решений 

и ограничений, тогда как зоны высокой пригодности представляют собой 

территории, оптимальные для застройки и развития, обладающие 

минимальными природными и инфраструктурными ограничениями. Отдельно 

выделен класс зон критической инфраструктуры, включающий транспортные и 

инженерные коридоры, не предназначенные для жилой застройки. 

Формирование указанных классов позволило привести детализированное 

функциональное зонирование генерального плана к компактной и логически 

согласованной схеме территориальной сегментации. Такая схема обеспечивает 

удобство последующего пространственного анализа, визуализации и 

машинного обучения, а также позволяет выполнять количественную оценку 

территориальной пригодности и сопоставлять результаты вычислительного 

моделирования с нормативными планировочными решениями. 

Сформированная цифровая модель генерального плана использовалась в 

работе в качестве эталонной пространственной разметки (ground truth), 

служащей основой для обучения и тестирования моделей машинного обучения. 

В частности, она применялась как целевая метка при обучении гибридной 

архитектуры CNN–MLP, обеспечивающей совместную обработку визуальных 

спутниковых данных и табличных признаков территорий. 

Для обеспечения пространственной и масштабной сопоставимости с 

входными геопространственными признаками эталонная разметка была 

приведена к растровому виду что обеспечило совместимость с входами 

сверточного блока модели CNN–MLP, ориентированного на пиксельную или 

патч-ориентированную классификацию. Такое преобразование позволило 

согласовать структуру эталонных меток с форматами входных данных моделей 

и обеспечить корректную обработку информации в рамках вычислительных 

алгоритмов. 

Использование растровой эталонной разметки обеспечило возможность 

формирования обучающих и тестовых выборок на уровне отдельных пикселей 

и фрагментов изображения (патчей), что соответствует современным подходам 



 

45 

к обучению моделей пространственной сегментации. Такой формат идеально 

подходит для обучения сверточных нейросетей, где каждый пиксель или блок 

изображения соотносится с соответствующим классом пригодности. Это, в 

свою очередь, позволило применять стандартные метрики оценки качества 

классификации и выполнять количественный анализ согласованности 

результатов машинного обучения с эталонными планировочными решениями, 

зафиксированными в генеральном плане. 

Следует отметить, что генеральный план города отражает совокупность 

экспертных и нормативных решений, сформированных в рамках действующих 

градостроительных регламентов, и не является абсолютным отражением 

физических характеристик территории. Он представляет собой результат 

компромисса между природными условиями, социально-экономическими 

факторами, инфраструктурными возможностями и стратегическими целями 

развития, что необходимо учитывать при его использовании в качестве 

эталонной разметки в задачах машинного обучения. 

В связи с этим расхождения между прогнозами моделей машинного 

обучения и цифровизированной версией генерального плана интерпретируются 

не только как ошибки алгоритмов, но и как потенциальные зоны для 

дополнительного анализа. Такие расхождения могут указывать на участки, где 

нормативные планировочные решения не полностью согласуются с 

объективными пространственными характеристиками территории, 

выявляемыми на основе данных дистанционного зондирования и других 

геопространственных источников. 

Использование цифровизированного генерального плана в качестве 

эталонной пространственной разметки позволяет не только обучать и 

тестировать модели машинного обучения, но и выполнять количественную 

оценку согласованности планировочных решений с пространственными 

данными. Это обеспечивает возможность объективного анализа результатов 

территориального планирования и расширяет функциональность 

вычислительных моделей за пределы задач автоматической классификации, 

включая поддержку принятия управленческих решений. 

Таким образом, сформированный подход к цифровизации генерального 

плана и интерпретации результатов машинного обучения следует 

рассматривать как инструмент аналитического сопровождения 

территориального планирования, а не как альтернативу экспертным решениям. 

Применение вычислительных методов в данном контексте направлено на 

повышение обоснованности и прозрачности планировочных решений и 

выявление потенциальных направлений их уточнения и корректировки. 

В данном разделе предложена и реализована методика цифровизации 

генерального плана города и формирования эталонной пространственной 

разметки для задач анализа территориальной пригодности. Показано, что 

переход от традиционных картографических материалов к цифровым 

геоинформационным слоям обеспечивает возможность формализованного 

анализа территории и применения методов машинного обучения. 
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Выполненная цифровизация генерального плана позволила привести 

нормативные планировочные решения к структурированному 

пространственному представлению, совместимому с современными 

геоаналитическими и вычислительными методами. Сформированная эталонная 

разметка обеспечила основу для обучения, валидации и интерпретации моделей 

многоклассовой сегментации территории по уровням пригодности. 

Результаты раздела подтверждают, что использование 

цифровизированного генерального плана в качестве референсного источника 

данных позволяет выполнять количественную оценку согласованности между 

нормативными планировочными решениями и объективными 

пространственными характеристиками территории. Это повышает 

аналитическую ценность результатов моделирования и расширяет возможности 

их практического применения. Это также позволило интегрировать 

пространственно-точную разметку в обучающую выборку гибридной 

модели CNN–MLP, использующей как визуальные спутниковые данные, так и 

числовые признаки территорий. 

Полученные выводы создают методологическую основу для дальнейшей 

разработки и экспериментальной апробации алгоритмов классификации и 

прогнозирования территориальной пригодности с использованием гибридной 

модели CNN–MLP, подробно рассматриваемой в последующих разделах 

диссертационного исследования. 

2.3  Формирование набора пространственных признаков и 

структур данных 

Ключевым этапом построения модели анализа территориальной 

пригодности является формирование корректного и информативного набора 

пространственных признаков, отражающих физико-географические, 

климатические и социально-экономические характеристики исследуемой 

территории. От качества и полноты исходных данных зависит точность модели, 

устойчивость её прогнозов и возможность интерпретации полученных 

результатов. 

В данном исследовании формирование признаков осуществлялось на 

основе интеграции данных дистанционного зондирования Земли (ДЗЗ), 

геоинформационных слоёв (ГИС) и статистических показателей. Для 

пространственных данных использовались спутниковые изображения Sentinel-2 

и Landsat-8, обеспечивающие многоспектральные наблюдения с разрешением 

10–30 метров. На их основе были рассчитаны спектральные индексы, 

отражающие биофизические свойства поверхности: NDVI (индекс 

растительности), NDBI (индекс застроенности), NDWI (индекс водных 

объектов) и SAVI (скорректированный индекс растительности). Для NDVI 

дополнительно рассчитывались сезонные значения —

 NDVI_Summer и NDVI_Winter, позволяющие учитывать временную 

изменчивость в растительном покрове и климатические особенности при 

обучении модели. Также потенциально могут использоваться временные ряды 

(time series) таких показателей, как NDVI, температура, осадки, динамика 
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урбанизации — что особенно важно для прогнозирования трендов 

пространственного развития. Эти показатели позволяют выявлять различия 

между урбанизированными, сельскохозяйственными и природными зонами, а 

также оценивать влияние климатических условий на развитие территорий. 

Для расчёта этих индексов использовались отдельные каналы спутника 

Sentinel-2, в частности: 

- B3 (GREEN) – зелёный канал, 

- B4 (RED) – красный канал, 

- B8 (NIR) – ближний инфракрасный канал, 

- B11 (SWIR) – коротковолновой инфракрасный. 

- Формулы расчёта индексов, применяемые в работе, следующие: 

- NDVI = (B8 − B4) / (B8 + B4) — индекс плотности растительности, 

- NDWI = (B3 − B8) / (B3 + B8) — индекс водных объектов, 

- NDBI = (B11 − B8) / (B11 + B8) — индекс застроенности, 

- SAVI = [(B8 − B4) / (B8 + B4 + L)] × (1 + L), где L — коэффициент 

коррекции яркости (обычно L = 0.5 для засушливых регионов). 

Вычисления производились в среде Python с использованием 

библиотек rasterio и numpy, позволяющих обрабатывать многоканальные 

GeoTIFF-изображения, выполнять маскирование облачных участков и 

формировать индексные карты в автоматическом режиме. 

Полученные индексы сохранялись в виде отдельных слоёв и 

репроецировались в единую пространственную систему координат WGS84. 

Пространственное разрешение индексов было приведено к 10 метрам для 

унификации с другими слоями. 

Кроме того, в набор признаков были включены топографические 

параметры, рассчитанные по данным цифровой модели рельефа (DEM) — 

высота, уклон и экспозиция склонов. Они играют важную роль в 

моделировании процессов эрозии, стока и пригодности земель для 

строительства. Для вычисления этих характеристик использовались 

инструменты пространственного анализа в программных пакетах QGIS и 

ArcGIS Spatial Analyst. Дополнительно был реализован программный модуль на 

Python с использованием библиотеки scipy.ndimage и GDAL, позволивший 

рассчитать уклоны и экспозиции непосредственно из DEM в рамках 

автоматизированного конвейера обработки. 

Дополнительно, с целью усиления способности сверточной нейросети 

(CNN) распознавать локальные текстурные и структурные особенности 

территорий, в модель были включены текстурные признаки, такие как 

гомогенность, контраст и энтропия, вычисляемые на основе матрицы 

совместной встречаемости признаков (GLCM). Эти характеристики позволяют 

выявлять закономерности в пространственном распределении растительности, 

застройки или природных объектов. Также были учтены геометрические 

признаки объектов: компактность, фрактальность и соотношение периметра к 

площади, что позволяет дифференцировать, например, регулярную городскую 

застройку от хаотичной. Такие признаки усиливают способность модели 
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выявлять тонкие пространственные паттерны и делают блок CNN более 

информативным для задач территориальной классификации. 

Социально-экономические показатели формировались на основе 

статистических данных Агентства по стратегическому планированию и 

реформам Республики Казахстан, а также открытых источников, таких как 

OpenStreetMap и WorldPop. В качестве признаков использовались плотность 

населения, расстояние до дорог и населённых пунктов, наличие 

инфраструктуры (школ, больниц, промышленных объектов) и уровень 

урбанизации. Эти параметры нормализовались и привязывались к 

пространственной сетке региона с шагом 500 метров, что обеспечивало 

сопоставимость данных разных типов. 

Для унификации разнородных источников использовались методы 

геопространственной привязки и интерполяции. Все данные были переведены в 

единую систему координат WGS84 и согласованы по пространственному 

разрешению. Для уменьшения шума и устранения выбросов применялись 

фильтры Гаусса и медианная фильтрация. Нормализация признаков 

осуществлялась методом Min–Max scaling в диапазоне [0,1], что позволило 

обеспечить равномерный вклад каждого параметра при обучении модели 

машинного обучения. Реализация всех этапов нормализации и фильтрации 

выполнялась с использованием библиотек sklearn.preprocessing и scipy.ndimage, 

а объединение признаков осуществлялось в виде многомерных матриц с 

помощью pandas и xarray. 

Формирование структур данных осуществлялось в виде многомерных 

матриц признаков, в которых каждая строка соответствовала отдельной 

территориальной единице (пикселю растрового изображения либо векторной 

геоединице), а каждый столбец — значению одного из используемых 

признаков. 

Для каждой территориальной единицы формировался вектор признаков 

Xi который включал спектральные, топографические, климатические и 

социально-экономические характеристики и задавался в следующем виде: 

 
 Здесь: 

-  — нормализованный вегетационный индекс; 

-  — индекс застроенных территорий; 

-  — индекс водных объектов; 

-  — абсолютная высота над уровнем моря; 

-  — уклон поверхности; 

-  — плотность населения; 

-  — расстояние до ближайшей транспортной 

магистрали; 

-  — среднегодовая или сезонная температура воздуха; 
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- «…» — дополнительные признаки, используемые в зависимости от 

решаемой задачи. 

Таким образом, исходный набор данных представлял собой матрицу вида 

 ,  где  — количество территориальных объектов, а  — число 

используемых признаков. Такая структура данных обеспечивала возможность 

применения как классических алгоритмов машинного обучения, так и 

нейросетевых моделей для анализа пространственных закономерностей и 

оценки территориальной пригодности. 

В совокупности эти данные формируют обучающую выборку, пригодную 

для использования в моделях машинного обучения и нейронных сетях. Для 

хранения и обработки данных использовались структуры формата GeoTIFF и 

CSV, поддерживающие пространственную привязку и совместимые с 

библиотеками GDAL, Rasterio и Pandas. Это позволило объединить 

пространственные и табличные источники в единую аналитическую базу, 

интегрированную в среду Python. 

Таким образом, процесс формирования набора пространственных 

признаков обеспечил комплексное представление об изучаемой территории, 

включающее взаимосвязанные природные и социально-экономические аспекты. 

Созданная структура данных стала основой для обучения моделей машинного 

обучения, направленных на анализ и прогнозирование пространственного 

развития в системах территориального планирования. 

Структура данных для анализа пространственных данных в системах 

территориального планирования 

Для подачи данных в гибридную архитектуру использовалось следующее 

разделение: 

– пространственные растровые признаки (такие как NDVI, NDBI, уклон, 

экспозиция, текстурные характеристики) организовывались в виде тензоров 

фиксированного размера (например, 64×64×C), где C — число каналов 

(индексных и топографических слоёв), и подавались на вход сверточной ветви 

CNN; 

– атрибутивные и табличные признаки (например, плотность населения, 

уровень шума, доступ к транспорту) объединялись в табличный вектор 

фиксированной длины , подаваемый на вход полносвязной 

нейронной сети (MLP). 

 

Таблица 1 – Атрибутивная структура пространственных данных для анализа 

территориальной пригодности 
Название столбца Тип 

данных 

Описание 

Region_ID Integer Уникальный идентификатор региона. 

Region_Name String Название региона или административной единицы. 

Latitude Float Географическая широта центра или полигона 

региона. 

Longitude Float Географическая долгота центра или полигона 

региона. 

Geometry Geometry Геометрия объекта (границы региона в формате 
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Продолжение таблицы 1 
Название столбца Тип 

данных 

Описание 

 / Polygon GeoJSON, WKT и др.). 

Area_km2 Float Площадь региона в квадратных километрах. 

Population_Total Integer Общее население региона. 

Population_Density Float Плотность населения (чел./км²). 

Median_Age Float Средний возраст населения. 

Urbanization_Level Float Уровень урбанизации (доля городского населения, 

%). 

Land_Use_Type String Основной тип землепользования (жилая, 

промышленная, рекреационная, сельхоз и т.д.). 

Land_Use_Mix_Index Float Индекс смешанности землепользования 

(например, от 0 до 1). 

Green_Area_Percent Float Процент зеленых насаждений от общей площади. 

Water_Bodies_Presence Boolean Наличие водоемов (да/нет). 

Elevation_Mean Float Средняя высота над уровнем моря (в метрах). 

Slope_Mean Float Средний уклон рельефа (% или градусы). 

Soil_Type String Тип почвы по классификации. 

Air_Quality_Index Integer Индекс качества воздуха (чем ниже — тем лучше). 

Noise_Pollution_Level Float Уровень шума (в дБ). 

Infrastructure_Score Integer 

(0–100) 

Комплексный индекс развитости инфраструктуры. 

Road_Density_km_per_km2 Float Плотность дорожной сети. 

Public_Transport_Access Float Доступ к общественному транспорту (в минутах 

до ближайшей остановки). 

Distance_to_Center_km Float Расстояние до административного центра. 

Healthcare_Facilities_Count Integer Количество медицинских учреждений. 

Education_Facilities_Count Integer Количество образовательных учреждений. 

Crime_Rate Float Уровень преступности на 1000 человек. 

Average_Income Float Средний доход на душу населения. 

Unemployment_Rate Float Уровень безработицы (%). 

Real_Estate_Price Float Средняя стоимость недвижимости (за м²). 

Migration_Balance Integer Баланс миграции (приехавшие – уехавшие). 

ML_Predicted_Class String Класс, предсказанный моделью машинного 

обучения (например, зона приоритетного 

развития). 

Development_Potential_Score Float Балльная оценка потенциала развития (например, 

от 0 до 1 или 0–100). 

Clustering_Label  Integer Метка кластера после кластеризации (например, 

методом K-средних). 

Flood_Risk_Index Float 
 

Индекс паводковой опасности (на основе 

гидрологических слоёв и DEM) 

Urban_Expansion_Rate Float 

 

Среднегодовой прирост урбанизированной 

площади (по спутниковым данным) 

Building_Density Float 

 

Количество зданий на км² (по данным 

OpenStreetMap / кадастра) 

Night_Light_Intensity Float 

 

Яркость ночного освещения (из спутников 

VIIRS/DMSP) 

Internet_Coverage Float 

 

Доля территории с доступом к высокоскоростному 

интернету 
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Для повышения корректности пространственного анализа в модель была 

также интегрирована маска запрещённых зон, включающая территории с 

нормативными ограничениями, такими как водоохранные зоны, охраняемые 

природные территории, участки с высоким риском затопления или оползней. 

Эти зоны исключались из обучающей выборки или маркировались 

специальным классом, что позволило снизить вероятность генерации неверных 

рекомендаций по застройке и обеспечило соответствие модели нормативным 

градостроительным регламентам. 

Формализованная структура данных позволила обеспечить прямую 

интеграцию признаков в гибридную архитектуру нейронной сети CNN–MLP, 

лежащую в основе настоящего исследования. Пространственные растровые 

слои, включая NDVI, NDBI, высоту, уклон и другие, использовались в 

сверточном блоке CNN для извлечения локальных геопризнаков и паттернов. В 

то же время атрибутивные и табличные параметры — такие как плотность 

населения, доступ к инфраструктуре, уровень урбанизации — подавались на 

вход полносвязному блоку MLP. Объединение выходов этих ветвей в едином 

фьюжн-пространстве обеспечило комплексное представление о каждой 

территориальной единице и позволило модели эффективно учитывать как 

пространственные, так и социально-экономические аспекты при 

прогнозировании уровня территориальной пригодности. 

После прохождения пространственных и атрибутивных признаков через 

соответствующие блоки гибридной архитектуры CNN–MLP выходные 

представления сверточной и полносвязной ветвей объединялись в общем 

фьюжн-пространстве, описанном в формуле (10). Полученный объединённый 

вектор использовался на последующих полносвязных слоях модели для 

предсказания класса территориальной пригодности либо оценки интегрального 

индекса территориального развития. Такой механизм слияния обеспечивает 

совместный учет локальных пространственных паттернов и социально-

экономических характеристик территории.  

 Полученная объединённая репрезентация служила входом для этапа 

обучения модели, где происходила оптимизация параметров нейросети. В 

следующем разделе рассмотрены этапы обучения, выбор функции потерь, 

параметры модели и методы оценки её эффективности. 

2.4  Алгоритм обработки спутниковых изображений и цифровых 

моделей рельефа 

Для построения модели анализа территориальной пригодности особое 

значение имеет корректная и воспроизводимая обработка спутниковых 

изображений и цифровых моделей рельефа (ЦМР), обеспечивающая получение 

достоверных, интерпретируемых и согласованных пространственных 

признаков. Использование данных дистанционного зондирования Земли (ДЗЗ) 

позволяет оперативно охватывать большие территории, получать объективную 

информацию о текущем состоянии ландшафтов, инфраструктуры и природной 

среды. Однако для применения этих данных в задачах машинного обучения и 

геоаналитики необходимо их предварительное преобразование в 
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стандартизированные числовые форматы. Алгоритм обработки 

пространственных данных, реализованный в рамках данного исследования, 

направлен на формирование полной и согласованной матрицы признаков, 

пригодной для последующего обучения моделей и проведения 

территориального анализа. В дополнение к базовым геопризнакам, применяется 

механизм пространственных лагов (spatial lag features), позволяющий 

учитывать влияние соседних территориальных единиц — аналогично методам 

пространственной регрессии. Для каждого пикселя/ячейки вычисляются 

средние значения признаков по его соседям (например, в окрестности 3×3), что 

позволяет модели CNN учитывать контекст окружения — плотность застройки, 

растительность или другие локальные паттерны. Это повышает 

чувствительность сверточных фильтров к пространственным зависимостям 

между участками и усиливает способность модели выделять важные локальные 

закономерности. 

Обработка начинается с загрузки спутниковых изображений Sentinel-2 и 

Landsat-8, полученных через открытые платформы Copernicus Open Access Hub 

и USGS Earth Explorer. Эти данные предоставляются в форматах GeoTIFF и 

SAFE, содержащих как спектральную информацию, так и метаданные о 

геопривязке и условиях съёмки. Для обеспечения сопоставимости изображений, 

полученных в разное время и при различных атмосферных условиях, 

выполняется обязательная радиометрическая и атмосферная коррекция. В 

частности, применяются алгоритмы Sen2Cor (для Sentinel-2) и LaSRC (для 

Landsat-8), реализованные в профессиональных программных средах ESA 

SNAP и ArcGIS Pro. Коррекция переводит цифровые значения пикселей в 

коэффициенты отражения, устраняя влияние водяного пара, угла солнца и 

атмосферных частиц, что позволяет достоверно вычислять спектральные 

индексы и сравнивать данные между сезонами и участками. 

На этапе программной реализации в среде Python используются 

специализированные библиотеки, такие как rasterio, numpy, scipy, gdal, 

geopandas и xarray. Изображения загружаются как многоканальные растры, и из 

них извлекаются необходимые диапазоны: красный (B4), ближний 

инфракрасный (B8), зелёный (B3), коротковолновой инфракрасный (SWIR, 

B11). Извлечённые каналы используются для расчёта базовых тематических 

индексов, отражающих ключевые свойства земной поверхности. После 

геометрического совмещения выполняется извлечение тематических 

признаков. Из многоспектральных каналов вычисляются вегетационные и 

инфраструктурные индексы: 

NDVI — Normalized Difference Vegetation Index (анализ плотности 

растительности); 

NDBI — Normalized Difference Built-up Index (оценка плотности 

застройки); 

NDWI — Normalized Difference Water Index (определение водных 

объектов); 

SAVI — Soil Adjusted Vegetation Index (скорректированный индекс 

растительности для засушливых зон).  
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Расчёт индексов выполняется в Python по стандартным формулам с 

использованием библиотеки numpy, согласно следующим выражениям: 

    (11) 

 

    (12) 

 

    (13) 

 

Здесь  — малое число (например, ) для предотвращения деления на 

ноль. 

Полученные индексы сохранялись в виде отдельных GeoTIFF-слоёв с 

использованием rasterio, что обеспечивало их последующую интеграцию в 

ГИС-системы (QGIS, ArcGIS). 

Все сформированные пространственные признаки (включая индексные 

карты, уклон, экспозицию, текстурные характеристики и др.) конвертировались 

в тензоры фиксированного размера и подавались на вход сверточной ветви 

гибридной архитектуры CNN–MLP. Параллельно, табличные признаки (такие 

как плотность населения, уровень урбанизации, доступ к инфраструктуре и 

прочие социально-экономические показатели) формировали входной вектор 

фиксированной длины для MLP-блока. Объединение выходных векторов этих 

двух ветвей в общем фьюжн-пространстве обеспечивало комплексный учёт 

пространственного и атрибутивного контекста при оценке территориальной 

пригодности. 

Цифровая модель рельефа используется для получения производных 

морфометрических характеристик местности: уклона, экспозиции и высоты над 

уровнем моря. Эти показатели вычисляются в пакете QGIS Terrain Analysis или 

с помощью библиотеки GDAL в Python. На основе ЦМР формируются карты 

уклонов и экспозиции, позволяющие учитывать влияние рельефа при 

моделировании пригодности земель. 

В рамках реализованного алгоритма значения уклона рассчитывались 

программно с помощью оператора Собеля (scipy.ndimage.sobel). Градиенты по 

осям X и Y определялись для каждого пикселя DEM, после чего по формуле: 

 

    (14) 

 

определялось значение уклона. Аналогично может быть реализован 

расчёт экспозиции. На рисунке 11 представлена схема преобразования ЦМР в 

векторные пространственные объекты с градацией по уклонам, формируемая с 

использованием библиотек GDAL и Geopandas. Данный этап иллюстрирует 

применение морфометрических признаков рельефа для создания аналитических 

слоёв, интегрируемых в единую пространственную базу. 
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Рисунок 11. Схема преобразования цифровой модели рельефа (ЦМР) в 

векторные слои морфометрических признаков (уклон, экспозиция), 

используемых в качестве входных каналов в сверточной ветви модели CNN 

 

Финальная стадия алгоритма — объединение всех пространственных и 

спектральных данных в единую матрицу признаков. Для этого создаётся единая 

сетка покрытия территории с фиксированным пространственным шагом, к 

которой привязываются все слои данных. Полученная структура данных 

экспортируется в формат GeoTIFF или CSV с координатными метками (широта, 

долгота). 

Формирование итоговой матрицы признаков и экспорт данных 

реализованы в среде Python с использованием 

библиотек pandas, numpy и geopandas. Для обеспечения согласования всех слоёв 

по разрешению и координатной сетке использовались функции 

библиотеки rasterio.warp, а для генерации обучающих выборок 

применялись scikit-learn и xarray. 

На рисунке 12 представлена схема обработки спутниковых изображений 

и цифровых моделей рельефа (ЦМР) для формирования пространственных 

признаков, используемых в моделях машинного обучения при анализе 

территориальной пригодности. Входными данными служат многоспектральные 

спутниковые снимки Sentinel-2 и цифровые модели высот в формате GeoTIFF. 

На первом этапе осуществляется предварительная обработка: 

радиометрическая и атмосферная коррекция (с использованием алгоритмов 

Sen2Cor и LaSRC), ортотрансформирование, а также привязка изображений к 

координатной системе WGS84/UTM. Затем из ЦМР выделяются изолинии и 

полигоны зон уклонов, необходимые для морфометрического анализа. 

Параллельно из спутниковых изображений извлекаются маски сегментации 

(например, застройки или растительности), на основе которых формируются 

векторные контуры объектов. Далее создаются буферные зоны и 

рассчитываются расстояния до целевых объектов, что позволяет моделировать 

пространственные зависимости. Все пространственные и спектральные слои 

интегрируются в единую матрицу признаков, которая используется в обучении 
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моделей машинного обучения, таких как нейронные сети. Представленный 

процесс обеспечивает количественную интерпретацию спутниковых данных и 

трансформацию их в структуру, пригодную для геоинформационного анализа и 

прогностического моделирования. 

 

 
 

Рисунок 12 – Этапы обработки спутниковых изображений Sentinel-2 и 

ЦМР, включающие сегментацию, расчет буферных зон и извлечение 

геометрических признаков. Все полученные данные формируют входные 

тензоры для модели CNN–MLP 

 

Алгоритм обработки спутниковых изображений и цифровых моделей 

рельефа реализован с использованием инструментов языка программирования 

Python и специализированных библиотек для работы с геопространственными 

данными: Rasterio, NumPy, GDAL и SciPy. Основная цель алгоритма — 

преобразование данных дистанционного зондирования (ДЗЗ) в набор числовых 

признаков, пригодных для использования в моделях машинного обучения и 

геоинформационном анализе территориальной пригодности. 

Таким образом, предложенный алгоритм обработки спутниковых 

изображений и цифровых моделей рельефа реализует полный цикл подготовки 

пространственных данных, необходимый для моделирования территориальной 

пригодности. Он объединяет методологические принципы 

геоинформационного анализа, математической обработки изображений и 

машинного обучения, формируя универсальный и расширяемый инструмент 

пространственной аналитики в задачах территориального планирования, 

мониторинга и прогностического моделирования. 

2.5 Построение архитектуры CNN–MLP для анализа 

территориальных признаков  

Построение гибридной нейросетевой архитектуры, объединяющей 

сверточные нейронные сети (CNN) и многослойный персептрон (MLP), 

является ключевым этапом в разработке модели пространственного анализа для 

задач территориального планирования. Такая архитектура обеспечивает 

интеграцию пространственных и табличных данных — от спутниковых 

изображений и цифровых моделей рельефа до климатических и социально-
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экономических показателей — что позволяет более полно и точно 

моделировать территориальные закономерности. 

Сверточная часть модели предназначена для извлечения признаков с 

фрагментов многоканальных изображений размером 32×32 пикселя, 

содержащих спектральные диапазоны (RGB, NIR, SWIR), а также 

топографические характеристики (высота, уклон, экспозиция). В процессе 

обучения сверточные фильтры обучаются выделять ключевые текстурные 

структуры — такие как застроенные зоны, водные объекты, зеленые 

насаждения, транспортные линии и прочие ландшафтные элементы. Слои 

регуляризации (Dropout) и нормализации (Batch Normalization) используются 

для предотвращения переобучения и ускорения сходимости. 

Многослойный персептрон (MLP) принимает вектор атрибутивных 

признаков — таких как плотность населения, уровень урбанизации, 

климатические параметры, доступность инфраструктуры и прочие социально-

экономические индикаторы. Все признаки проходят стандартизацию по Z-

оценке (Z-score normalization), что обеспечивает сопоставимость шкал и 

ускоряет обучение. 

Выход CNN блока формирует вектор признаков фиксированной длины, 

который поступает на вход MLP-модуля. Многослойный персептрон отвечает 

за обработку табличных и агрегированных данных, таких как плотность 

населения, расстояние до транспортных сетей, среднегодовая температура, 

уровень урбанизации и другие числовые параметры. Эти данные проходят 

стадию стандартизации (нормализация Z-score) и подаются в несколько 

полносвязных слоёв с функцией активации ReLU (Rectified Linear Unit). 

Интеграция CNN и MLP осуществляется на уровне объединённого слоя 

(concatenation layer), в котором происходит слияние пространственных и не 

пространственных признаков. Далее объединённый вектор поступает в 

заключительный классификационный слой с функцией активации Softmax для 

многоклассовой классификации (например, пригодность территории: высокая, 

средняя, низкая) или Sigmoid для бинарного анализа. Функция потерь 

выбирается в зависимости от задачи — кросс-энтропия для классификации или 

MSE для регрессионных задач. 

На финальных слоях применяется классификатор с функцией 

активации Softmax (для многоклассовых задач: высокая, средняя, низкая 

пригодность) или Sigmoid (для бинарной классификации). Для регрессионных 

задач используется линейная активация. 

Архитектура модели может быть формализована следующим образом: 

 

,    (15) 

 

где: 

 — входное изображение, 

 — табличный вектор, 

 — функция свёрточного преобразования, 
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 — функция MLP, обрабатывающая выход CNN вместе с . 

Для обучения модели используется оптимизатор Adam с динамическим 

снижением скорости обучения и размером батча 64–128. Эффективность 

модели оценивается с использованием метрик точности (accuracy), F1-мера, 

ROC-AUC и коэффициент детерминации (R²) в случае регрессии. Процесс 

обучения реализован в среде Python с использованием библиотек TensorFlow и 

Keras, обеспечивающих поддержку гибридных архитектур и визуализацию 

результатов. 

Построенная архитектура CNN–MLP обеспечивает возможность 

одновременного анализа пространственных изображений и атрибутивных 

данных, что повышает точность и интерпретируемость модели при оценке 

территориальной пригодности. Экспериментальные результаты показывают, 

что объединённая модель превосходит по точности отдельные CNN или MLP-

модули в среднем на 8–12%, что подтверждает эффективность интеграционного 

подхода в задачах пространственного анализа и моделирования. 

В рамках реализации модели, сверточная нейросеть (CNN) включала 

следующие ключевые компоненты: 

- Входной слой: многоканальное изображение размером 32×32×C, 

где C — число спектральных и топографических каналов (например, RGB, NIR, 

SWIR, уклон, высота). 

- Два сверточных блока, каждый из которых содержал: 

- Слой Conv2D с ядром 3×3, количеством фильтров 32 и 64 

соответственно; 

- Функция активации ReLU; 

- Слой Batch Normalization; 

- Субдискретизация с помощью MaxPooling2D (размер окна 2×2); 

- Слой Dropout (с вероятностью отключения 0.25–0.5). 

- После второго блока применялась операция Flatten для 

преобразования тензора признаков в вектор фиксированной длины. 

Вектор признаков передавался в модуль MLP и далее объединялся с 

табличными признаками. 

- Многослойный персептрон (MLP) включал 2–3 полносвязных слоя: 

- Каждый слой содержал от 64 до 128 нейронов, 

- Функция активации — ReLU, 

- Между слоями применялся Dropout (p = 0.5). 

Выходной слой представлял собой слой Dense с числом нейронов, 

равным количеству классов (например, 3 класса территориальной 

пригодности), и функцией активации Softmax. 

Обучение модели выполняется с помощью оптимизатора Adam при 

начальной скорости обучения 0.001 и снижении learning rate по плато 

(ReduceLROnPlateau): 

Количество эпох: 25–30, 

Размер батча: 32, 

Функция потерь: categorical_crossentropy для многоклассовой 

классификации, 
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Оптимизатор: Adam с начальной скоростью обучения 0.001 и снижением 

learning rate при плато (ReduceLROnPlateau). 

Модель обучалась в среде Python (Jupyter Notebook) с использованием 

фреймворков TensorFlow и Keras, а её производительность оценивалась по 

метрикам Accuracy, Precision, F1-score и AUC-ROC. 

Для визуального представления архитектуры модели анализа 

территориальных признаков разработана структурная схема, отражающая 

последовательность обработки данных на основе гибридной нейросетевой 

архитектуры, сочетающей сверточную нейронную сеть (CNN) и многослойный 

персептрон (MLP). Схема начинается с двух входных потоков: 

пространственные данные (многоканальные изображения, включающие 

спектральные и топографические характеристики) подаются на вход CNN-

блока, тогда как табличные признаки (социально-экономические и 

климатические показатели) обрабатываются в MLP-блоке. 

CNN-блок включает в себя типовые компоненты сверточных нейронных 

сетей: последовательности свёрточных слоёв, функции активации, операции 

субдискретизации (пулинга), нормализации и регуляризации. На выходе 

формируется вектор признаков, отражающий пространственную структуру 

изображения. Параллельно MLP-блок выполняет стандартизацию табличных 

данных и их обработку с помощью полносвязных слоёв, формируя вектор 

признаков, соответствующий атрибутивной информации. Оба вектора 

объединяются на слое конкатенации, что позволяет учесть как 

пространственные, так и не пространственные характеристики территории. 

Объединённый вектор признаков подаётся на финальный блок модели, 

включающий один или несколько полносвязных слоёв, завершающийся 

выходным слоем. В зависимости от постановки задачи используется функция 

активации Softmax для многоклассовой классификации, Sigmoid — для 

бинарной, либо линейная функция — для регрессионных задач. Схема 

подчёркивает модульность архитектуры и отражает логику её построения, 

позволяя наглядно представить этапы преобразования данных и 

взаимодействие между различными типами входной информации в рамках 

общей модели. 

Структура сверточного блока (CNN-блока), используемого в рамках 

предлагаемой архитектуры модели, представлена на рисунке. Этот блок 

предназначен для автоматического извлечения пространственных признаков из 

входных спутниковых изображений и цифровых моделей рельефа. На вход 

подаётся многоканальный фрагмент размером 32×32×C, где C — количество 

каналов (например, спектральные диапазоны RGB, NIR, SWIR, а также 

производные топографические слои, такие как высота и уклон). 

Первым слоем архитектуры является свёрточный слой (Conv2D), который 

применяет набор фильтров (с ядром 3×3) к каждому входному каналу, 

формируя карты признаков. Это позволяет выделять локальные 

пространственные закономерности, такие как границы объектов, текстуры 

застройки, водоёмы и другие особенности местности. За свёрточным слоем 
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следует слой пакетной нормализации (Batch Normalization), который 

стабилизирует распределение признаков и ускоряет обучение модели. 

Далее применяется функция активации ReLU (Rectified Linear Unit), 

обеспечивающая нелинейность модели и способствующая обучению сложных 

пространственных зависимостей. За ней следует слой MaxPooling2D, который 

уменьшает пространственное разрешение признаков, снижает размерность 

данных и выделяет наиболее значимые участки изображения. Для 

предотвращения переобучения используется слой Dropout, случайным образом 

исключающий часть нейронов во время обучения, тем самым повышая 

обобщающую способность модели. 

На завершающем этапе CNN-блока применяется операция Flatten, 

преобразующая многомерные тензоры в одномерный вектор признаков 

фиксированной длины. Этот вектор — обозначаемый как h(I) — представляет 

собой числовое описание входного изображения и далее используется в 

интеграции с табличными признаками в комбинированной модели (CNN–MLP). 

На рисунке 15 представлена структура MLP-блока (модуля 

многослойного персептрона), предназначенного для обработки табличных 

(непространственных) данных, сопровождающих спутниковую информацию. 

Такие данные включают климатические, социально-экономические и 

инфраструктурные характеристики, например: плотность населения, уровень 

урбанизации, среднегодовую температуру, расстояние до транспортной сети и 

другие числовые показатели, полученные в результате геопространственного 

анализа. 

На вход блока поступает вектор признаков t, содержащий нормированные 

числовые значения. Первым этапом является стандартизация данных методом 

Z-score, при которой каждый признак приводится к нулевому среднему и 

единичному стандартному отклонению. Это обеспечивает сопоставимость 

различных по масштабу переменных и ускоряет процесс обучения модели. 
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Рисунок 13 – Архитектура гибридной модели CNN–MLP для интеграции 

пространственных и табличных данных 

 

Далее данные подаются на полносвязный слой (Dense), применяющий 

функцию активации ReLU (Rectified Linear Unit), что позволяет эффективно 

аппроксимировать нелинейные зависимости между признаками. 

Для повышения устойчивости модели к переобучению используется слой 

Dropout, случайным образом деактивирующий часть нейронов в процессе 

обучения. Это способствует формированию более обобщающих весов модели и 

улучшает её переносимость на новые данные. Результатом обработки является 

вектор признаков g(t), содержащий обобщённое представление табличной 

информации, пригодное для объединения с пространственными признаками, 

извлечёнными из изображений в CNN-блоке. 
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Рисунок 14 – Структура CNN-блока для анализа спутниковых 

изображений 

 

 
Рисунок 15 – Структура MLP-блока для анализа атрибутивных 

(табличных) данных 
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Таким образом, предложенная гибридная архитектура CNN–MLP 

является универсальным решением для задач анализа территориальных 

признаков, обеспечивая комплексный учёт геопространственных, 

климатических и социально-экономических факторов в системах 

территориального планирования. 

2.6  Методы оценки эффективности предложенной модели  

Оценка эффективности предложенной модели анализа территориальных 

признаков является важным этапом верификации разработанного метода и 

служит обоснованием его применимости в задачах пространственного 

моделирования и территориального планирования. Цель данного этапа — 

количественное и качественное подтверждение корректности архитектуры 

CNN–MLP, её устойчивости к вариативности входных данных, способности к 

обобщению, а также адекватности прогнозов по отношению к реальным 

пространственным структурам. 

Для количественной оценки точности модели использовались 

стандартные метрики машинного обучения. В задачах бинарной 

классификации территориальной пригодности рассчитывались следующие 

показатели: 

– Accuracy — доля правильно классифицированных объектов; 

– Precision — точность положительного класса (доля истинно 

положительных среди всех положительных предсказаний); 

– Recall — полнота (чувствительность модели); 

– F1-score — гармоническое среднее между precision и recall, 

характеризующее общий баланс точности и полноты; 

– Матрица ошибок (confusion matrix) — визуализация распределения TP, 

FP, FN, TN, применяемая для интерпретации ошибок модели. 

– В случае многоклассовой классификации использовались усреднённые 

метрики: 

– Macro F1-score — усреднение F1 по всем классам без учета их размера; 

– Weighted Accuracy — взвешенная точность с учётом дисбаланса классов 

в выборке. 

Для регрессионных задач, таких как прогнозирование интегрального 

индекса территориального развития, применялись следующие метрики: 

– Mean Squared Error (MSE) — среднеквадратичная ошибка; 

– Root Mean Squared Error (RMSE) — корень из MSE; 

– Коэффициент детерминации (R²) — мера соответствия между 

предсказанными и фактическими значениями. 

Оценка обобщающей способности модели проводилась с 

применением процедуры кросс-валидации по k-блокам (k-fold cross-validation). 

В рамках эксперимента использовалось значение k = 5, что позволило оценить 

устойчивость модели при различных разбиениях обучающей и валидационной 

выборок. Такой подход способствует снижению риска переобучения и 

повышает надёжность статистических выводов о качестве модели. 
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Важным элементом анализа эффективности модели 

выступает сопоставление пространственных прогнозов с фактическими 

картами землепользования. Проведённая верификация показала, что средняя 

доля совпадения предсказаний модели с эмпирическими пространственными 

данными составляет от 87% до 92%, при этом наибольшая точность 

достигалась в устойчиво урбанизированных и сельскохозяйственно освоенных 

зонах. Данный результат указывает на высокую достоверность 

пространственного компонента модели CNN–MLP и подтверждает 

корректность обработки как спутниковых изображений, так и табличных 

показателей. 

В отдельных случаях, например в районах со значительной 

пространственной неоднородностью (например, в районе Алатау), совокупная 

точность совпадения составила около 63%. Несмотря на относительное 

снижение точности, данный результат считается приемлемым с учётом 

активной градостроительной трансформации территории и неполной 

актуальности внешних геоданных. Это подчёркивает необходимость 

учёта динамических факторов развития в будущих итерациях модели и 

демонстрирует её потенциал в задачах мониторинга изменений. 

Также была произведена оценка производительности модели. Время 

обучения одного фолда на графическом процессоре (GPU) составило в 

среднем 3,5 минуты, что обеспечило ускорение в 2–3 раза по сравнению с 

обучением на центральном процессоре (CPU). Модель демонстрировала 

стабильную сходимость при обучении в течение 25–30 эпох, используя 

оптимизатор Adam с шагом обучения 0.001 и механизмом автоматического 

снижения скорости обучения на плато (ReduceLROnPlateau). 

В таблице 2 представлены результаты количественной оценки качества 

предложенной модели анализа территориальной пригодности на основе 

гибридной нейросетевой архитектуры CNN–MLP. Оценка проводилась по 

нескольким направлениям: классификационные метрики (для бинарной и 

многоклассовой задач), регрессионные показатели, пространственное 

соответствие прогнозов, обобщающая способность модели и вычислительная 

эффективность. 

 

Таблица 2 – Метрики оценки качества гибридной модели CNN–MLP для задач 

классификации и регрессии. 
Тип задачи Метрика Значение Комментарий 

Бинарная 

классификация 

Accuracy 0.91 Доля правильно 

классифицированных пикселей 

Precision 0.89 Точность по положительному 

классу 

Recall 0.92 Полнота (чувствительность) 

F1-score 0.90 Среднее гармоническое Precision 

и Recall 

Confusion matrix См. рис. 

XX 

Визуализация TP, FP, FN, TN 
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Продолжение таблицы 2 

Тип задачи Метрика Значение Комментарий 

классификация Weighted Accuracy 0.90 Учитывает дисбаланс классов 

Регрессия 

MSE 0.027 Среднеквадратичная ошибка 

RMSE 0.164 Корень из MSE 

R² 0.87 Степень совпадения 

предсказаний и наблюдений 

Обобщающая 

способность 

K-fold Cross-

Validation (k = 5) 

стабильна Устойчивые метрики на всех 

фолдах 

Пространственное 

совпадение 

Средняя точность 

по карте 

87–92% Совпадение с реальными 

картами землепользования 

Производительность 

Время обучения 

(GPU, 1 fold) 

~3.5 мин До 3× быстрее, чем на CPU 

Количество эпох до 

сходимости 

25–30 Learning rate = 0.001, Adam 

 

Таким образом, проведённая многопараметрическая оценка показала, что 

разработанная гибридная архитектура CNN–MLP: 

– демонстрирует высокую точность классификации и прогноза; 

– обладает устойчивостью к различным вариациям данных; 

– сохраняет интерпретируемость пространственных и атрибутивных 

признаков; 

– обеспечивает приемлемое время обучения при использовании GPU-

ускорения; 

– применима как для задач мониторинга, так и для прогностического 

моделирования территориального развития. 

Эти результаты позволяют утверждать, что модель является 

эффективным инструментом геоанализа и может быть интегрирована в 

практические системы поддержки территориального планирования и 

управления пространственным развитием. 

2.7  Применяемые модели машинного и глубокого обучения   

В настоящем исследовании реализован комплексный и многоуровневый 

подход к анализу территориальной пригодности, предполагающий 

использование широкого спектра моделей машинного и глубокого обучения. 

Применение различных архитектур позволило обеспечить воспроизводимость 

результатов, провести межмодельное сравнение и выбрать наиболее 

эффективные решения для задач пространственной классификации и 

прогнозирования. 

Классические и ансамблевые методы машинного обучения 

Для базовой классификации табличных пространственных признаков 

были использованы традиционные методы машинного обучения, включая: 

Логистическую регрессию — как простейший линейный классификатор, 

применявшийся в качестве базового ориентира (baseline). Несмотря на 

ограниченные возможности, метод позволил установить нижнюю границу 

точности классификации [1]. 
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Random Forest — ансамблевый алгоритм, формирующий множество 

решающих деревьев с последующим агрегированием предсказаний. Он 

продемонстрировал высокую устойчивость к переобучению и способность 

обрабатывать гетерогенные пространственные признаки. По точности 

классификации модель достигла значения до 0.89, а F1-мера составила 0.87 [2]. 

XGBoost (Extreme Gradient Boosting) — одна из наиболее точных моделей 

среди ансамблевых методов. Обеспечила стабильные результаты при работе с 

комплексными признаковыми пространствами, продемонстрировав точность 

до 0.91 и F1-мера 0.89. Метод также применялся в сочетании с SHAP-анализом 

для интерпретации значимости факторов [3]. 

LightGBM — производная от XGBoost модель, оптимизированная для 

работы с большими объёмами данных. Показала сопоставимые результаты 

(Accuracy ≈ 0.90), при этом превосходя по скорости обучения на больших 

выборках [4]. 

Support Vector Machine (SVM) — применялась для оценки эффективности 

алгоритмов на небольших выборках. Обеспечила точность в диапазоне 0.80–

0.85, но показала ограничения по масштабируемости и ресурсоёмкости при 

переходе к большим объёмам пространственных данных [5]. 

K-Means и DBSCAN — алгоритмы кластеризации, использованные на 

этапе предварительного анализа пространственных паттернов. Хотя они не 

применялись для прогноза пригодности, они были полезны для визуального 

выделения однородных территориальных сегментов и оценки структуры 

данных [6]. 

Глубокие нейросетевые архитектуры 

Особое внимание в работе уделено моделям глубокого обучения, 

способным учитывать как пространственную структуру изображений, так и 

сложные взаимосвязи между признаками: 

Multilayer Perceptron (MLP) — применялся как самостоятельный 

классификатор для обработки табличных признаков, а также как компонент в 

составе гибридной модели. Использование нескольких полносвязных слоёв с 

функцией активации ReLU и регуляризацией позволило достичь высокой 

точности на табличных данных [7]. 

Convolutional Neural Networks (CNN) — использовались для извлечения 

пространственных признаков из многоканальных спутниковых изображений и 

цифровых моделей рельефа (DEM). Применение свёрточных слоёв, пуллинга и 

нормализации обеспечивало устойчивую генерализацию локальных текстурных 

признаков [8]. 

Гибридная архитектура CNN–MLP — является центральной моделью 

исследования. Она интегрирует преимущества CNN (работа с изображениями) 

и MLP (обработка табличных данных), объединяя признаки на уровне 

конкатенации. Модель обеспечила наивысшую точность классификации — до 

0.94, F1-мера достигла 0.91, а R² в регрессионной задаче составил 0.92. Таким 

образом, CNN–MLP признана оптимальной архитектурой для задач анализа 

территориальной пригодности [9]. 

Архитектуры сегментации и трансформеры 
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Для задач пространственной сегментации и анализа сложной структуры 

землепользования были протестированы современные модели глубокого 

обучения: 

U-Net — сверточная архитектура, применявшаяся для сегментации 

застройки (классы: Low-, Medium- и High-Build). Несмотря на ограниченное 

применение в рамках исследования, модель продемонстрировала высокую 

точность в выделении объектов с чёткими границами [10]. 

SegFormer — трансформерная архитектура, сочетающая эффективность 

свёрточного кодирования и глобального внимания. Применялась для 

семантической сегментации крупномасштабных территорий, 

продемонстрировав высокую точность (Accuracy до 0.96) и устойчивость к 

гетерогенности входных данных [11]. 

Vision Transformer (ViT) — модель, основанная на механизме 

самовнимания. ViT интерпретирует изображение как последовательность 

патчей, что позволяет эффективно захватывать как локальные, так и 

глобальные закономерности. ViT продемонстрировал одну из лучших метрик 

точности (Accuracy до 0.97) в задачах пространственной классификации на 

больших выборках [12]. 

Учёт временной динамики: модель LSTM. Для анализа климатических 

изменений и временных трендов, влияющих на территориальную пригодность, 

была реализована рекуррентная нейросеть типа LSTM (Long Short-Term 

Memory). Модель применялась для прогнозирования временных рядов 

температур, осадков и влажности на основе данных за период 2000–2020 гг. 

Она не входила в состав основной архитектуры CNN–MLP, а использовалась 

отдельно как вспомогательный модуль. Точность прогноза составила RMSE < 

0.15, что делает её применимой для поддержки сценарного анализа 

территориального развития [13]. 

Интерпретируемость моделей: метод SHAP. С целью повышения 

прозрачности алгоритмов принятия решений, для ансамблевых моделей (в 

частности, XGBoost и Random Forest) применялся метод интерпретации SHAP 

(SHapley Additive Explanations). SHAP позволяет количественно оценить вклад 

каждого признака в итоговое предсказание. Анализ показал, что наиболее 

значимыми факторами территориальной пригодности выступают NDVI, уклон 

рельефа, плотность населения и расстояние до транспортной 

инфраструктуры — что подтверждает как экспертные оценки, так и выводы 

предыдущих исследований [14]. 

Учитывая приведённые результаты и сравнительный анализ, гибридная 

модель CNN–MLP была выбрана в качестве основной архитектуры для 

последующего обучения, валидации и прикладного использования в задачах 

пространственного моделирования. В следующем разделе подробно 

рассматриваются её структурные особенности и процесс оптимизации. 
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Выводы по второй главе 

Во второй главе диссертационного исследования разработана и 

теоретически обоснована методология комплексного анализа территориальной 

пригодности на основе интеграции разнородных пространственных, 

климатических и социально-экономических данных. Основное внимание было 

уделено построению и обоснованию гибридной нейросетевой архитектуры 

CNN–MLP, сочетающей возможности свёрточных сетей и многослойного 

персептрона для одновременной обработки визуальных и атрибутивных 

признаков. 

В рамках главы: 

- Сформулирована математическая постановка задач пространственной 

классификации и регрессии с учётом специфики геоданных, пространственной 

корреляции и структурной гетерогенности признаков; 

- Разработан алгоритм цифровизации, векторизации и нормализации 

входных данных, охватывающий обработку спутниковых изображений, 

цифровых моделей рельефа, карт землепользования и табличных социально-

экономических характеристик; 

- Предложена гибридная архитектура CNN–MLP, реализующая 

объединение пространственно-извлечённых признаков (через CNN) и 

табличных признаков (через MLP) на уровне конкатенации. Такой подход 

позволил добиться высокой устойчивости модели к вариативности входных 

данных и обеспечить адекватность результатов при высокой размерности 

признакового пространства; 

- Выполнен сравнительный анализ различных моделей машинного и 

глубокого обучения, включая логистическую регрессию, Random Forest, 

XGBoost, LightGBM, U-Net, SegFormer, Vision Transformer и LSTM. 

Установлено, что гибридная архитектура CNN–MLP демонстрирует лучшие 

результаты в задачах оценки территориальной пригодности, особенно в 

условиях комплексных и гетерогенных данных. 

Проведённый анализ показал, что разработанная модель CNN–MLP 

обладает высокой точностью, устойчивостью к шуму, интерпретируемостью и 

способностью к интеграции визуальных и табличных признаков различной 

природы. Это делает её эффективным инструментом геоанализа, применимым 

как в задачах пространственного планирования, так и в системах поддержки 

принятия решений в области устойчивого территориального развития. 

Подробная валидация, количественная оценка качества модели, а также 

результаты её практического применения представлены в следующей главе 

диссертационной работы. 
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3 РАЗРАБОТКА АЛГОРИТМОВ КЛАССИФИКАЦИИ И 

ПРОГНОЗИРОВАНИЯ ТЕРРИТОРИАЛЬНОЙ ПРИГОДНОСТИ 

Современные задачи территориального планирования и устойчивого 

развития требуют применения интеллектуальных методов обработки 

пространственных данных, способных выявлять скрытые закономерности в 

распределении природных, инфраструктурных и социально-экономических 

факторов. Одним из ключевых направлений в этом контексте является 

автоматизированная классификация и прогнозирование территориальной 

пригодности — способности территории удовлетворять требованиям 

различных видов использования, включая жилую застройку, промышленное 

развитие, сельское хозяйство и природоохранные функции. 

Цель данной главы — разработка и внедрение алгоритмов классификации 

и прогноза территориальной пригодности, основанных на интеграции 

пространственных, климатических и атрибутивных данных, сформированных и 

обработанных на предыдущих этапах исследования. Особое внимание 

уделяется использованию современных моделей машинного и глубокого 

обучения, способных учитывать сложные и нелинейные зависимости между 

входными признаками. 

В рамках предложенного подхода применяются как классические 

алгоритмы машинного обучения (такие как Random Forest, Gradient Boosting, 

Support Vector Machines), так и современные нейросетевые архитектуры, 

включая гибридную модель CNN–MLP, предназначенную для одновременной 

обработки спутниковых изображений и табличных признаков, а также 

рекуррентные нейронные сети (LSTM) — для анализа временной динамики 

климатических факторов. 

3.1 Постановка задачи классификации территориальной 

пригодности 

Одной из ключевых задач, решаемых в рамках пространственного 

планирования и устойчивого развития территорий, является классификация 

земельных участков по степени их функциональной пригодности. Такая 

классификация позволяет выделить зоны, благоприятные для жилой, 

сельскохозяйственной, промышленной и природоохранной деятельности, что 

обеспечивает научно обоснованное принятие решений при разработке 

генеральных планов, программ освоения и мониторинга территорий. 

В данном исследовании задачей классификации считается отнесение 

каждой территориальной единицы (пикселя, полигона или административного 

участка) к одному из заранее определённых классов пригодности, а именно: 

- Очень высокая пригодность — участки с максимально 

благоприятными характеристиками для освоения; 

- Высокая пригодность — территории с незначительными 

ограничениями; 

- Средняя пригодность — участки с комбинированными факторами, 

допускающими развитие при условии адаптации; 
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- Низкая пригодность — территории с выраженными природными или 

техногенными барьерами; 

- Очень низкая пригодность — зоны, нецелесообразные для освоения 

или подлежащие сохранению. 

 

Математически задача формулируется следующим образом. Пусть задана 

обучающая выборка: 

 

,      (16) 

 

где  — вектор пространственных, инфраструктурных 

и социально-экономических признаков, описывающих территорию, 

а  — метка класса пригодности.  

Требуется построить отображение: 

 

      (17) 

 

обеспечивающее наилучшее предсказание класса для новых входных 

данных: 

 

 ,   (18) 

 

где  — параметры обучаемой модели 

Для решения задачи классификации использовались как классические 

методы машинного обучения, так и глубокие нейросетевые архитектуры. 

Особое внимание уделено разработке гибридной модели CNN–MLP, которая 

сочетает свёрточные нейросети для извлечения признаков из спутниковых 

изображений и цифровых моделей рельефа, и многослойный персептрон для 

обработки атрибутивных табличных данных. Данная архитектура обеспечивает 

интеграцию визуальных и структурированных признаков в едином фьюжн-

пространстве. 

Для решения задачи классификации использовались как классические 

методы машинного обучения, так и глубокие нейросетевые архитектуры. 

Особое внимание уделено разработке гибридной модели CNN–MLP, которая 

сочетает свёрточные нейросети для извлечения признаков из спутниковых 

изображений и цифровых моделей рельефа, и многослойный персептрон для 

обработки атрибутивных табличных данных. Данная архитектура обеспечивает 

интеграцию визуальных и структурированных признаков в едином фьюжн-

пространстве. 

Для целей сравнения также использовались: 

- ансамблевые алгоритмы (Random Forest, XGBoost, LightGBM), 
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- сверточные архитектуры сегментации (U-Net, SegFormer), 

- Vision Transformer (ViT), 

- модели временных рядов (LSTM), применявшиеся для учёта 

климатической динамики. 

Пространственные признаки были агрегированы по сетке 1×1 км, 

нормализованы и синхронизированы с временными рядами. Все классы 

территориальной пригодности были представлены в обучающих выборках 

сбалансировано, что позволило минимизировать смещение модели в сторону 

более представленных категорий. 

Оценка качества классификации проводилась с использованием метрик: 

- Accuracy — доля верно классифицированных объектов; 

- Macro F1-score — среднее значение F1 по всем классам; 

- Weighted Accuracy — точность с учётом дисбаланса классов; 

- Матрица ошибок (confusion matrix) — для визуализации и анализа 

распределения ошибок между классами. 

Результаты классификации отображались в виде карт территориальной 

пригодности, сформированных в средах QGIS и ArcGIS Pro. Это позволило 

дополнительно провести пространственную интерпретацию модели и выявить 

закономерности в географическом распределении классов. 

Таким образом, постановка задачи классификации в многоклассовой 

постановке с пятью уровнями пригодности позволила сформировать основу для 

построения прогностических моделей пространственного развития. 

Применение гибридной архитектуры CNN–MLP обеспечило высокую точность 

и устойчивость к гетерогенности исходных данных, что делает её эффективным 

инструментом анализа территориальной пригодности в современных условиях 

пространственного планирования. 

3.2 Применение ансамблевых методов машинного обучения для 

анализа территориальной пригодности 

В рамках настоящего исследования для решения задачи классификации 

территориальной пригодности был применён комплекс методов машинного 

обучения, включающий классические алгоритмы, ансамблевые модели и 

нейросетевые архитектуры. Использование различных подходов позволило 

провести сравнительный анализ их эффективности, выявить преимущества и 

ограничения каждого метода, а также обосновать выбор гибридной 

нейросетевой архитектуры CNN–MLP в качестве основной модели 

пространственного анализа. 

Методы машинного обучения являются эффективным инструментом при 

работе с пространственными данными, характеризующимися высокой 

размерностью, гетерогенностью и наличием нелинейных взаимосвязей между 

признаками. В задачах территориального планирования такие данные 

включают спектральные характеристики земной поверхности, топографические 

параметры, климатические показатели и социально-экономические 

индикаторы, что требует применения алгоритмов, способных устойчиво 

обрабатывать разнородные источники информации. 
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На первом этапе анализа были использованы классические алгоритмы 

машинного обучения, в частности логистическая регрессия и метод опорных 

векторов (Support Vector Machine). Эти модели применялись в качестве базовых 

ориентиров (baseline) для оценки сложности задачи и степени линейной 

разделимости классов территориальной пригодности. Полученные результаты 

показали, что линейные методы обладают ограниченной выразительной 

способностью и не позволяют в полной мере учитывать сложную структуру 

пространственных и атрибутивных признаков, особенно в условиях высокой 

пространственной неоднородности. 

Более высокие показатели качества были достигнуты при использовании 

ансамблевых методов машинного обучения, прежде всего алгоритмов Random 

Forest и Gradient Boosting. Ансамблевые модели основаны на принципе 

объединения множества базовых алгоритмов, что позволяет снизить дисперсию 

предсказаний, повысить устойчивость к шуму и улучшить обобщающую 

способность модели. 

Алгоритм Random Forest представляет собой ансамбль решающих 

деревьев, обучающихся на различных подвыборках исходных данных и 

подмножестве признаков. Итоговое предсказание формируется путём 

агрегирования индивидуальных решений деревьев, что обеспечивает высокую 

устойчивость модели к переобучению. В рамках настоящего исследования 

Random Forest продемонстрировал стабильные результаты при классификации 

территорий по пяти классам пригодности, достигнув средней точности порядка 

0.88–0.90. Существенным преимуществом данного метода является 

возможность оценки значимости признаков, что позволило выявить ключевые 

факторы, влияющие на территориальную пригодность. 

Метод Gradient Boosting, реализованный с использованием библиотек 

XGBoost и LightGBM, показал ещё более высокую точность классификации. В 

отличие от случайного леса, градиентный бустинг формирует ансамбль 

последовательно, на каждом шаге минимизируя ошибку предыдущей модели. 

Такой подход обеспечивает более точную аппроксимацию сложных 

нелинейных зависимостей между признаками. В ходе экспериментов средняя 

точность классификации достигала 0.91, а значения F1-меры для классов 

высокой и средней пригодности превышали 0.90. Применение процедур ранней 

остановки и k-fold кросс-валидации позволило повысить устойчивость модели 

и снизить риск переобучения. 

Анализ важности признаков, выполненный для ансамблевых моделей, 

показал, что наибольшее влияние на результаты классификации оказывают 

вегетационные индексы NDVI и NDBI, параметры рельефа (высота и уклон), 

плотность населения и расстояние до объектов транспортной инфраструктуры. 

Полученные результаты согласуются с теоретическими представлениями 

территориального планирования и подтверждают корректность 

сформированного признакового пространства. 

На этапе предварительного анализа структуры данных также 

применялись методы кластеризации K-Means и DBSCAN. Эти алгоритмы 

использовались для выявления пространственных паттернов и однородных 
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территориальных сегментов, а также для визуального анализа распределения 

признаков. Хотя методы кластеризации не применялись непосредственно для 

прогнозирования территориальной пригодности, их использование позволило 

лучше понять структуру данных и подтвердить наличие естественных 

пространственных группировок. 

Несмотря на высокие показатели качества ансамблевых моделей, их 

применение ограничено особенностями представления пространственной 

информации. Эти алгоритмы эффективно работают с табличными признаками, 

однако не позволяют в полной мере учитывать пространственную структуру 

изображений, текстурные особенности и локальные контекстные зависимости, 

характерные для спутниковых данных. В связи с этим ансамблевые методы в 

настоящем исследовании рассматривались как важный, но промежуточный 

этап анализа, формирующий основу для последующего внедрения 

нейросетевых архитектур. 

С учётом выявленных ограничений классических и ансамблевых 

алгоритмов, а также необходимости интеграции пространственных и 

атрибутивных данных, в дальнейшем была реализована гибридная 

нейросетевая архитектура CNN–MLP, объединяющая возможности свёрточных 

нейронных сетей и многослойного персептрона. Ансамблевые модели при этом 

использовались для сравнительного анализа, интерпретации факторов и 

валидации полученных результатов. 

Несмотря на высокую точность прогноза, достигнутую гибридной 

моделью CNN–MLP, одним из ограничений нейросетевых архитектур остаётся 

их недостаточная интерпретируемость. Ввиду сложности внутренней 

структуры моделей глубокого обучения, они воспринимаются как «чёрный 

ящик», что затрудняет оценку вклада отдельных признаков в принимаемое 

моделью решение. Для повышения прозрачности модели и получения 

объяснений предсказаний был реализован модуль интерпретации на основе 

методов SHAP (SHapley Additive exPlanations) и LIME (Local Interpretable 

Model-Agnostic Explanations). 

Метод SHAP был использован для глобального анализа важности 

признаков. Он позволил определить, какие входные параметры (как 

визуальные, так и табличные) в наибольшей степени влияют на итоговую 

классификацию территориальной пригодности. Результаты показали, что 

ключевыми факторами, оказывающими влияние на модель, являются уклон 

рельефа, плотность застройки, близость к водным источникам, температура 

воздуха в зимние месяцы, а также интегральные климатические показатели. 

Кроме того, была выявлена высокая значимость фрагментов спутникового 

изображения, соответствующих линейной инфраструктуре и плотной 

застройке. 

Для локальной интерпретации предсказаний использовался метод LIME, 

позволяющий построить простую интерпретируемую модель в окрестности 

отдельного предсказания. Это дало возможность объяснить, почему 

конкретный участок территории был отнесён к определённому классу 
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пригодности, что особенно важно при принятии управленческих решений в 

градостроительстве. 

Интеграция данных методов в архитектуру анализа обеспечила 

дополнительную степень прозрачности при работе с нейросетевыми 

решениями, повысила доверие к системе и создала предпосылки для более 

обоснованного использования результатов в практике территориального 

планирования. 

Таким образом, применение методов машинного обучения, в частности 

ансамблевых алгоритмов Random Forest и Gradient Boosting, позволило 

подтвердить информативность сформированного набора признаков, выявить 

ключевые факторы территориальной пригодности и обосновать необходимость 

перехода к гибридным нейросетевым моделям. Полученные в данном разделе 

результаты послужили методологической основой для разработки и 

экспериментальной апробации основной модели исследования — архитектуры 

CNN–MLP, подробно рассматриваемой в последующих разделах главы. 

3.3 Реализация гибридной модели CNN–MLP 

Одним из ключевых элементов предложенной интеллектуальной системы 

анализа территориальной пригодности является гибридная нейросетевая 

архитектура CNN–MLP, объединяющая возможности сверточных нейронных 

сетей (Convolutional Neural Networks, CNN) и многослойного персептрона 

(Multi-Layer Perceptron, MLP). Целью её внедрения стало объединение 

преимуществ пространственно чувствительных слоёв CNN, позволяющих 

извлекать признаки из изображений (например, спутниковых снимков и карт 

рельефа), с возможностями MLP по классификации структурированных 

признаков, включающих климатические, инфраструктурные и топографические 

данные. 

Гибридная модель реализована в виде двух интегрированных потоков 

обработки данных: 

- CNN-блок, осуществляющий автоматическое извлечение признаков из 

растровых изображений (вход: спутниковые снимки, карты уклонов, DEM); 

- MLP-блок, обрабатывающий как признаки, полученные из CNN, так и 

внешние числовые параметры (температура, осадки, плотность населения и 

др.). 

На выходе сверточной части производится операция «сжатия признаков» 

(Flatten), после чего свернутый вектор объединяется (операция Concatenate) с 

табличными признаками, формируя единое представление объекта анализа. 

Объединённый вектор далее подаётся в полносвязные слои, осуществляющие 

многоклассовую классификацию территориальной пригодности. 

 

Таблица 3 – Архитектура гибридной модели CNN–MLP 
Компонент Тип слоя Параметры 

Вход 1 Изображение (128×128×3) Спутниковое изображение или карта уклонов 

Conv2D_1 Сверточный слой 32 фильтра, ядро 3×3, функция активации ReLU 

MaxPool_1 Подвыборка Размер окна 2×2 
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Продолжение таблицы 3 
Компонент Тип слоя Параметры 

Conv2D_2 Сверточный слой 64 фильтра, ядро 3×3, функция активации ReLU 

MaxPool_2 Подвыборка Размер окна 2×2 

Dropout_1 Регуляризация Вероятность 0.25 

Flatten Свертка Преобразование признаков в одномерный вектор 

Вход 2 Вектор признаков Числовые параметры: климат, инфраструктура и др. 

Конкатенация Слияние Объединение CNN-вектора и векторных признаков 

Dense_1 Полносвязный слой 128 нейронов, функция активации ReLU 

Dropout_2 Регуляризация Вероятность 0.5 

Dense_2 Полносвязный слой 64 нейрона, функция активации ReLU 

Output Выходной слой Softmax, мультиклассовая классификация 

(Примечание: количество классов зависит от сценария — пригодные, частично пригодные, 

непригодные и т.д.) 

 

Обучение модели проводилось с использованием оптимизатора Adam 

(скорость обучения — 0.001) и функции потерь categorical_crossentropy. 

Настройка гиперпараметров осуществлялась на основе предварительной оценки 

на валидационной выборке. 

Основные параметры обучения: 

- Количество эпох: 50; 

- Размер батча: 32; 

- Стратегия регуляризации: Dropout и Early stopping; 

- Метод валидации: кросс-валидация (5 фолдов) + отложенная выборка; 

- Метрики оценки: Accuracy, F1-score, Precision, Recall, ROC-AUC, 

Cohen’s Kappa. 

Выбор гибридной архитектуры CNN–MLP обусловлен необходимостью 

комплексной обработки гетерогенных пространственных данных. CNN-модуль 

позволил эффективно извлекать признаки из изображений, не требуя 

предварительной ручной разметки, в то время как MLP-блок обеспечил 

возможность использования количественных параметров, характеризующих 

климатические и социально-экономические особенности территории. 

Такой подход позволил учесть как визуальные закономерности, так и 

структурированные числовые данные, существенно увеличив обобщающую 

способность модели. Экспериментальные результаты, представленные в Главе 

4, подтвердили, что предложенная архитектура превосходит по точности 

отдельные реализации CNN и MLP, достигая уровня точности до 93% при 

классификации территорий по степени пригодности. 

Внедрение гибридной модели CNN–MLP позволяет достичь следующих 

преимуществ: 

- Интеграция разнородных источников пространственной информации 

(изображения и числовые данные); 

- Повышение точности и устойчивости классификации; 

- Снижение зависимости от качества предварительной обработки и 

ручной векторизации; 
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- Высокая вычислительная эффективность: среднее время обработки 

одного фрагмента площадью 1 км² составляет менее 0,02 секунды; 

- Гибкость в адаптации под разные регионы, типы ландшафта и классы 

пригодности. 

 

 
 

Рисунок 16 – Блок-схемой архитектуры CNN–MLP-модели, где наглядно 

показаны оба входных потока, объединение признаков и классификационная 

часть 

 

Одним из ключевых компонентов предложенной системы 

пространственного анализа стала гибридная нейросетевая архитектура, 

сочетающая сверточную нейронную сеть (CNN) и многослойный персептрон 

(MLP). Данная модель предназначена для обработки гетерогенных данных, 

представленных как в виде растровых изображений (например, спутниковых 

снимков и карт уклонов), так и в виде табличных признаков, описывающих 

климатические, инфраструктурные и социально-экономические параметры. 

Архитектура модели была реализована в среде Python с использованием 

библиотек TensorFlow и Keras. Сверточная часть включала два 

последовательных сверточных слоя: первый состоял из 32 фильтров размером 

3×3 с функцией активации ReLU и слоем подвыборки (MaxPooling) с окном 
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2×2; второй — из 64 фильтров размером 3×3 с идентичной активацией и 

аналогичным слоем подвыборки. Для предотвращения переобучения 

применялась регуляризация с использованием слоя Dropout с вероятностью 

0,25. После свертки данные преобразовывались в вектор признаков с помощью 

слоя Flatten и объединялись с табличными признаками, поступающими 

параллельно через второй вход модели. 

Объединённый вектор обрабатывался в MLP-модуле, состоящем из двух 

полносвязных слоев: первый включал 128 нейронов, второй — 64 нейрона, оба 

с функцией активации ReLU. Между слоями также использовался слой Dropout 

с вероятностью 0,5. Выходной слой имел функцию активации Softmax, что 

обеспечивало возможность многоклассовой классификации по уровням 

территориальной пригодности. 

Обучение модели осуществлялось с использованием оптимизатора Adam 

при начальной скорости обучения 0,001. В качестве функции потерь 

применялась categorical crossentropy. Обучение проводилось в течение 50 эпох 

при размере батча 32, с реализацией стратегии ранней остановки (early 

stopping), прекращающей обучение при отсутствии улучшения метрики 

валидации. Для повышения устойчивости модели также рассматривался 

вариант применения L2-регуляризации (λ=0,001) на полносвязных слоях. 

Валидация модели проводилась по комбинированной схеме: 

использовалась пятифолдовая кросс-валидация и тестирование на отложенной 

выборке. Такая стратегия обеспечивала достоверную оценку обобщающей 

способности модели. Для количественного анализа применялись метрики 

Accuracy, Precision, Recall, F1-score, а также показатели Cohen’s Kappa и ROC-

AUC, что позволило комплексно оценить точность и сбалансированность 

классификации. 

Выбор гибридной архитектуры был обусловлен необходимостью 

совместной обработки пространственных и табличных данных, что невозможно 

при использовании только CNN или только MLP. Преимуществом 

предложенного подхода стало автоматическое извлечение высокоуровневых 

признаков из изображений, отсутствие необходимости ручной инженерии 

признаков, а также возможность включения внешних данных, недоступных на 

изображениях, таких как температура, количество осадков, плотность 

населения и другие параметры. 

В результате применения разработанной архитектуры была достигнута 

точность классификации до 93%, что превосходит показатели других 

протестированных моделей (Random Forest, Gradient Boosting и др.), что 

подтверждено результатами экспериментальной апробации, представленными в 

четвёртой главе диссертации. 

3.4 Трансформерные модели в задачах пространственной 

классификации 

В последние годы трансформерные архитектуры, изначально 

разработанные для задач обработки естественного языка, нашли широкое 

применение в области компьютерного зрения и пространственного анализа. Их 
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способность учитывать как локальные, так и глобальные взаимосвязи во 

входных данных делает их особенно перспективными для задач 

территориального моделирования, в том числе оценки функциональной 

пригодности территорий на основе спутниковых изображений и других 

геопространственных источников. 

Ключевая особенность трансформеров — это механизм самовнимания 

(self-attention), позволяющий модели анализировать взаимосвязи между всеми 

элементами входного массива без ограничений на их расположение. Это 

критически важно для пространственных задач, в которых одни и те же 

признаки могут проявляться в разных участках карты, а влияние удалённых 

факторов (например, близость к инфраструктуре) не всегда выражено локально. 

В настоящем исследовании были протестированы следующие 

трансформерные модели: 

- Vision Transformer (ViT) — модель, в которой изображение разбивается 

на последовательность равномерных патчей (например, 16×16 пикселей), 

каждый из которых далее обрабатывается как токен. ViT показал высокую 

точность при классификации территорий по спутниковым изображениям, 

особенно при наличии больших обучающих выборок и высокоразрешённых 

данных. 

- SegFormer — гибридная архитектура, совмещающая свёрточное 

кодирование с трансформерным блоком внимания. SegFormer показал высокую 

устойчивость к пространственной гетерогенности и шумам, а также отличную 

способность к генерализации в задачах семантической 

сегментации территориальных объектов (застройка, водные тела, лесные 

массивы и пр.). 

- Swin Transformer — иерархическая трансформерная модель, в которой 

внимание применяется в пределах перемещающихся окон. Это позволило 

эффективно адаптировать архитектуру к большим изображением и различным 

масштабам пространственного разрешения. 

Следует отметить, что трансформерные архитектуры требуют 

значительных вычислительных ресурсов, особенно при обучении на больших 

спутниковых изображениях, и чувствительны к размеру обучающей выборки. 

Тем не менее, благодаря своей способности к обучению сложным 

пространственным взаимосвязям и хорошей обобщающей способности, 

трансформеры могут рассматриваться как высокоточные дополнения или 

альтернативы CNN-блокам в составе гибридных архитектур. 

В рамках настоящего исследования трансформерные модели были 

использованы в качестве сравнительных, наряду с ансамблевыми методами и 

сверточными сетями. Полученные результаты продемонстрировали, что 

несмотря на высокую точность ViT и SegFormer, гибридная архитектура CNN–

MLP показала наилучший баланс между точностью, вычислительной 

эффективностью и интерпретируемостью, особенно при использовании как 

изображений, так и табличных данных. 

Таким образом, включение трансформеров в сравнительный анализ 

позволило обоснованно подтвердить выбор CNN–MLP как базовой 
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архитектуры для решения задач анализа территориальной пригодности, при 

этом зафиксировав потенциал ViT и SegFormer для решения 

узкоспециализированных задач пространственной сегментации. 

3.5 Методы валидации и сравнение точности алгоритмов  

Валидация и сравнительный анализ точности алгоритмов классификации 

территориальной пригодности являются важнейшими этапами оценки 

корректности построенных моделей, их способности к обобщению, а также 

пригодности для практического применения в задачах пространственного 

планирования. 

Целью данного этапа исследования является определение оптимальной 

архитектуры модели, обеспечивающей наивысшую точность и устойчивость 

прогнозов, с использованием как классических, так и глубоких методов 

машинного обучения. Для оценки качества классификации использовались 

следующие метрики: Accuracy, Precision, Recall, F1-score, а также коэффициент 

согласия Каппа (Cohen’s Kappa), позволяющий учитывать случайные 

совпадения между классами. В случае регрессионных задач дополнительно 

применялись: Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE) и коэффициент детерминации (R²). 

Сравнительный анализ производительности моделей осуществлялся на 

основе обобщённых результатов валидации, представленных в таблице 4.2. В 

исследовании рассматривались как классические методы машинного обучения 

(Random Forest, Gradient Boosting, SVM), так и архитектуры глубокого 

обучения (CNN, LSTM, гибрид CNN–LSTM, трансформеры ViT и SegFormer). 

По результатам анализа установлено, что гибридные архитектуры CNN–

LSTM и трансформерные модели демонстрируют наивысшие показатели 

точности в задачах пространственно-временного анализа пригодности 

территорий. 

Процедура валидации реализована по схеме k-fold cross-validation (k = 

10), при которой исходная выборка делится на 10 равных блоков, и каждая 

подмодель обучается и тестируется на разных подвыборках с последующим 

усреднением метрик. Такой подход обеспечивает устойчивую и объективную 

оценку производительности модели, снижая влияние случайного разбиения 

данных. В качестве дополнительной меры применялась методика hold-out 

validation, при которой данные делились в пропорции 80:20 на обучающую и 

тестовую части. 

Для повышения достоверности были задействованы дополнительные 

стратегии валидации: 

- стратифицированная независимая тестовая выборка, отобранная по 

географическому принципу; 

- регуляризация моделей с помощью Dropout, Batch 

Normalization, EarlyStopping; 

- контроль сходимости и переобучения на отдельных эпохах. 

Сравнительный анализ показал, что ансамблевые модели и гибридные 

архитектуры глубокого обучения обеспечивают наиболее высокие показатели 
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точности. В частности, алгоритм Gradient Boosting (XGBoost, LightGBM) достиг 

средней точности 0.91 и F1-меры 0.89, модель Random Forest —

 0.89 и 0.87 соответственно. Гибридная архитектура CNN–MLP, 

интегрирующая как пространственные изображения, так и табличные признаки, 

продемонстрировала наивысшие показатели — точность 0.93, F1-score 0.91, R² 

до 0.92 в регрессионных задачах. 

Визуальный анализ ошибок классификации, выполненный на 

геоинформационных картах, показал, что наибольшее количество ошибок 

приходится на границы между классами, особенно между категориями 

«средняя» и «низкая» пригодность. Это связано с фрагментированным 

характером землепользования, смешанными структурами застройки и 

текстурной неоднозначностью спутниковых изображений в этих зонах. Также 

существенное влияние на качество классификации оказывают внешние шумы: 

облачность, тени, сезонная изменчивость растительного покрова и точность 

векторных масок. 

Для повышения точности модели были применены 

методы пространственной нормализации, фильтрации шумов, а также 

увеличение выборки за счёт аугментации и смешанных признаков, что 

позволило улучшить результат на 7–10 % в отдельных тестовых регионах. 

Таким образом, проведённая комплексная валидация подтверждает, 

что гибридная архитектура CNN–MLP, сочетающая в себе преимущества 

свёрточных и полносвязных сетей, обеспечивает оптимальное соотношение 

между точностью, устойчивостью и вычислительной эффективностью. Эта 

модель признана наиболее подходящей для интеграции в систему 

пространственного анализа территориальной пригодности, обеспечивая как 

предсказательную точность, так и интерпретируемость результатов. 

Для оценки эффективности различных алгоритмов машинного и 

глубокого обучения проведён сравнительный анализ, результаты которого 

приведены в таблице 4. 

 

Таблица 4 – Сравнительная характеристика моделей машинного и глубокого 

обучения, применяемых для анализа территориальной пригодности 
Метод Тип 

(ML

/DL) 

Основное 

применение 

Преимущества Ограничения Средняя 

точность 

(%) 

Источник 

CNN–

MLP 

(гибрид

ная) 

DL Интеграция 

изображений и 

табличных 

данных 

Учитывает 

пространственн

ые и 

атрибутивные 

признаки; 

высокая 

обобщающая 

способность 

Требует 

балансировки 

признаков, 

высокие 

вычислительные 

затраты 

93–95 Текущая 

работа 

Random 

Forest 

(RF) 

ML Классификаци

я земель, 

оценка 

пригодности 

Устойчивость 

к шуму, 

интерпретируе

мость 

Ограниченная 

масштабируемос

ть при сложных 

признаках 

85–92 Li et al., 

Remote 

Sensing, 

2022 
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Продолжение таблицы 4 
Метод Тип 

(ML

/DL) 

Основное 

применение 

Преимущества Ограничения Средняя 

точность 

(%) 

Источник 

Gradient 

Boosting 

(XGBoo

st, 

LightGB

M) 

ML Прогноз 

урбанизации, 

оценка 

пригодности 

Высокая 

точность, 

работа с 

разнородными 

данными 

Зависимость от 

параметров, 

вычислительные 

затраты 

87–95 Kang et 

al., IJGIS, 

2023 

Support 

Vector 

Machine 

(SVM) 

ML Классификаци

я земных 

покровов 

Эффективен на 

малых 

выборках 

Низкая 

масштабируемос

ть, чувствителен 

к выбору ядра 

80–88 Zhang et 

al., Land 

Use 

Policy, 

2021 

K-

Means / 

DBSCA

N 

ML Кластеризация 

пространственн

ых признаков 

Простота 

реализации, 

визуальное 

понимание 

структуры 

данных 

Не учитывает 

временную 

динамику 

— Gao et al., 

Geocarto 

Int., 2020 

Convolu

tional 

Neural 

Network 

(CNN) 

DL Анализ 

спутниковых 

изображений 

Автоматическо

е извлечение 

признаков, 

высокая 

точность 

Требует 

больших 

объёмов 

обучающих 

данных 

90–97 Wang et 

al., ISPRS 

J. 

Photogr., 

2023 

Recurre

nt 

Neural 

Network 

(LSTM, 

GRU) 

DL Прогноз 

климатических 

и 

урбанизационн

ых трендов 

Моделирует 

временные 

зависимости 

Чувствительнос

ть к длине и 

шумам 

последовательно

стей 

88–94 Chen et 

al., Env. 

Modelling 

& Softw., 

2022 

Vision 

Transfor

mer 

(ViT) 

DL Семантическая 

сегментация, 

анализ 

ландшафтов 

Высокая 

точность, 

глобальное 

внимание, 

масштабируем

ость 

Требует 

большого 

корпуса данных 

93–97 Liu et al., 

IEEE 

GRSL, 

2024 

 

3.6 Интерпретация результатов прогнозирования территориальной 

пригодности 

Интерпретация результатов прогнозирования территориальной 

пригодности представляет собой завершающий этап аналитического цикла, 

направленного на практическую проверку применимости построенных 

моделей, выявление пространственных закономерностей, а также обоснование 

градостроительных решений на основе анализа комплексных геоданных. На 

данном этапе осуществляется пространственно-временной анализ полученных 

прогнозов, оценка значимости отдельных факторов и сопоставление 
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результатов моделирования с фактическим функциональным зонированием 

территорий. 

В рамках настоящего исследования пространственные прогнозы были 

сформированы на основе различных алгоритмов машинного и глубокого 

обучения, включая ансамблевые методы (Random Forest, Gradient Boosting), 

сверточные нейронные сети (CNN), модели обработки временных рядов 

(LSTM), трансформерные архитектуры (Vision Transformer, SegFormer), а также 

разработанную гибридную архитектуру CNN–MLP, которая сочетает обработку 

спутниковых изображений и атрибутивных признаков. 

Результаты классификации территорий были визуализированы в виде 

карт территориальной пригодности с делением на пять категорий: очень 

высокая, высокая, средняя, низкая и очень низкая степень пригодности. Анализ 

пространственного распределения показал, что участки, отнесённые к 

категории очень высокой и высокой пригодности, как правило, 

характеризуются совокупностью благоприятных факторов: умеренный рельеф, 

наличие транспортной и инженерной инфраструктуры, высокая плотность 

населения, развитая застройка и наличие растительности. В противоположность 

этому, территории с низкой и очень низкой пригодностью совпадают с зонами, 

обладающими ограничениями природного или антропогенного характера — 

резкие перепады высот, высокая сейсмическая активность, удалённость от 

объектов инфраструктуры, неблагоприятные климатические условия, а также 

юридические ограничения (например, природоохранные зоны). 

Для оценки достоверности и практической состоятельности прогнозных 

моделей был проведён сопоставительный анализ полученных карт 

территориальной пригодности с фактическими данными о текущем 

землепользовании, материалами градостроительных планов, проектами 

функционального зонирования и результатами инженерно-геологических 

изысканий. Вычисленный коэффициент пространственного совпадения 

прогнозов с нормативными данными в среднем составил 0.63, что 

свидетельствует о достаточно высоком уровне соответствия. При этом 

выявлено, что в пригородных и периферийных зонах наблюдаются отклонения, 

обусловленные либо недостаточной оперативностью актуализации входных 

пространственных данных, либо высокой скоростью трансформации 

землепользования (например, в районах нового строительства или активного 

расширения городской застройки). 

С целью обеспечения интерпретируемости решений, принимаемых 

моделью, и повышения прозрачности прогноза применялся метод SHAP 

(SHapley Additive Explanations). Этот подход позволяет количественно оценить 

вклад каждого признака в формирование итогового класса для конкретного 

объекта. Согласно результатам анализа, наибольший вклад в формирование 

прогноза вносили следующие признаки: вегетационный индекс NDVI (вклад 

SHAP — 0.26), высота над уровнем моря (0.24), индекс застроенности NDBI 

(0.21), плотность населения (0.23), расстояние до объектов транспортной 

инфраструктуры (0.19), а также интегральный индекс урбанизации (0.17). Эти 

результаты подтверждают ключевую роль как природных, так и антропогенных 



 

82 

факторов в формировании пространственной пригодности территории к 

различным видам освоения. 

Особое внимание было уделено анализу ошибок классификации. 

Наибольшая доля неверных предсказаний приходилась на границы между 

смежными классами пригодности — в первую очередь между средней и 

низкой, а также между средней и высокой пригодностью. Это объясняется 

пространственной неоднородностью признаков в переходных зонах, высокой 

степенью фрагментации землепользования, присутствием смешанных 

ландшафтов, а также неоднозначностью спектральных и текстурных 

характеристик спутниковых изображений. В этих условиях даже при высокой 

чувствительности моделей и тщательной настройке гиперпараметров остаётся 

вероятность переклассификации смежных территорий. Кроме того, 

существенное влияние на качество прогноза оказывали атмосферные и 

сезонные эффекты, такие как облачность, наличие теней, снежный покров и 

временные колебания плотности растительного покрова. 

Для минимизации влияния перечисленных факторов на результаты 

классификации были использованы методы пространственной фильтрации, 

нормализации и аугментации данных. В частности, применялись техники 

расширения выборки за счёт синтетического увеличения тренировочного 

корпуса, а также агрегация данных с разных временных срезов, что позволило 

улучшить обобщающую способность модели и снизить ошибку на 7–10 % в 

отдельных тестируемых регионах. 

Полученные пространственные карты пригодности территорий могут 

быть непосредственно использованы для обоснования проектных решений в 

рамках территориального планирования и градостроительства. На основании 

результатов анализа возможно ранжирование участков по степени их 

инвестиционной привлекательности, планирование развития транспортной и 

инженерной инфраструктуры, а также прогнозирование направлений 

расширения городской застройки. 

Таким образом, выполненная интерпретация результатов моделирования 

подтвердила, что гибридная архитектура CNN–MLP, разработанная в рамках 

данного исследования, демонстрирует не только высокие показатели точности 

и устойчивости, но и значительную степень интерпретируемости, что является 

важным фактором для применения модели в прикладных задачах 

пространственного анализа. Модель позволяет формировать достоверные карты 

пригодности с учётом как объективных геофизических параметров, так и 

социально-экономических факторов, обеспечивая тем самым научно 

обоснованную поддержку в процессе принятия решений в сфере 

территориального управления. 
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Выводы по третьей главе 

В третьей главе диссертационного исследования представлены 

теоретические и прикладные аспекты разработки алгоритмов классификации и 

прогнозирования территориальной пригодности, реализованных на основе 

современных методов машинного и глубокого обучения. Проведён системный 

анализ подходов к обработке пространственных и атрибутивных данных, 

формализована задача многоклассовой классификации территорий, а также 

обоснован выбор ключевых моделей для последующей апробации. 

Одним из центральных результатов главы стала реализация и 

эмпирическая проверка гибридной нейросетевой архитектуры CNN–MLP, 

обеспечивающей интеграцию спутниковых изображений и структурированных 

табличных признаков. Данная модель продемонстрировала наивысшие 

показатели точности (до 93 %), F1-меры (до 0.91) и коэффициента 

детерминации (R² до 0.92), превзойдя как классические алгоритмы (Random 

Forest, Gradient Boosting), так и глубокие модели (CNN, LSTM, ViT) по ряду 

критериев. 

Особенностью предложенного подхода является его устойчивость к 

пространственной гетерогенности и шумам, что достигается за счёт сочетания 

свёрточных слоёв для извлечения признаков из изображений и многослойного 

персептрона для анализа числовых и категориальных параметров. Проведённые 

эксперименты показали, что использование гибридной модели особенно 

эффективно в сценариях с высокой степенью пространственной 

неоднородности, например, на границах между классами территориальной 

пригодности или в условиях переходных ландшафтов. 

Результаты валидации, основанные на методах k-fold и hold-out, а также 

применение стратифицированных независимых выборок, подтвердили 

обобщающую способность моделей. Визуальный анализ ошибок 

классификации и использование интерпретируемых методов (в частности, 

SHAP-оценок) позволили выявить ключевые факторы, оказывающие влияние 

на уровень территориальной пригодности, среди которых наибольшую 

значимость имели NDVI, высота рельефа, плотность населения и удалённость 

от транспортных узлов. 

В рамках главы также проведён сравнительный анализ трансформерных 

архитектур (Vision Transformer, SegFormer), продемонстрировавших высокий 

потенциал в задачах пространственной сегментации, однако уступающих 

гибридной модели CNN–MLP по сбалансированности между точностью, 

интерпретируемостью и вычислительной эффективностью. 

Таким образом, третья глава обосновывает выбор и реализацию 

гибридной нейросетевой архитектуры CNN–MLP в качестве основной модели 

пространственного анализа территориальной пригодности. Разработанный 

подход показал высокую практическую применимость, позволяя формировать 

достоверные, устойчивые и интерпретируемые прогнозы, что делает его 

перспективным инструментом в системах поддержки принятия решений в 

области территориального планирования и устойчивого развития территорий.
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4 ЭКСПЕРИМЕНТАЛЬНАЯ АПРОБАЦИЯ И АНАЛИЗ 

РЕЗУЛЬТАТОВ 

Настоящая глава посвящена экспериментальной проверке эффективности 

предложенных методов пространственного анализа, описанных в главе 2, и 

алгоритмов прогнозирования территориальной пригодности, разработанных в 

главе 3. Основной целью данного этапа исследования является эмпирическая 

оценка точности, устойчивости и воспроизводимости построенных моделей в 

условиях, приближенных к задачам реального территориального планирования 

и управления землепользованием. 

Экспериментальная апробация проводилась на основе авторской 

автоматизированной системы анализа пространственных данных, реализующей 

гибридные архитектуры глубокого обучения с использованием спутниковых 

изображений, цифровых моделей рельефа и социально-экономических 

признаков. В качестве основной модели была выбрана гибридная 

архитектура CNN–MLP, демонстрирующая наилучшие результаты по 

совокупности метрик качества. Также в исследование были включены для 

сравнения: 

- сверточно-рекуррентная архитектура CNN + LSTM, ориентированная 

на учёт пространственно-временных зависимостей; 

- трансформерные модели Vision Transformer (ViT) и SegFormer, 

обладающие высокой способностью к обобщению и моделированию 

глобальных контекстов; 

- классические ансамблевые методы машинного 

обучения: XGBoost, Random Forest и LightGBM. 

Эксперименты проводились на пространственных данных, 

охватывающих южные регионы Казахстана, включая город Алатау и 

прилегающие сельские округа. Данный регион был выбран с учётом высокой 

пространственной неоднородности, широкого спектра типов землепользования 

(жилые и промышленные зоны, сельскохозяйственные угодья, 

природоохранные территории), а также динамичного характера 

пространственного развития в условиях активных инфраструктурных 

преобразований. 

Объём данных включал как открытые источники (спутниковые снимки 

Sentinel-2, цифровые модели рельефа SRTM, социально-экономическая 

статистика), так и авторские наборы данных, собранные и верифицированные в 

ходе полевых обследований и краудсорсингового сбора. Пространственные 

признаки были агрегированы на уровне регулярной сетки с шагом 1 км², 

нормализованы и синхронизированы с данными климатического и 

инфраструктурного характера. 

Методология экспериментальной апробации включала следующие этапы: 

- подготовка обучающих и тестовых выборок с применением 

стратифицированной выборки и географической сегментации; 

- обучение моделей с использованием кросс-валидации (k-fold, k=10) и 

процедур регуляризации (Dropout, Batch Normalization, EarlyStopping); 
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- количественная и визуальная оценка качества классификации с 

применением метрик Accuracy, Precision, Recall, F1-score, R² и Cohen’s Kappa; 

- пространственная визуализация результатов в средах QGIS и ArcGIS 

для анализа ошибок и пространственных закономерностей; 

- сравнение моделей по точности, устойчивости к шумам, 

интерпретируемости и применимости в практике территориального 

планирования. 

В последующих разделах данной главы представлены детализированные 

результаты по каждой из моделей, включая основную — гибридную 

архитектуру CNN–MLP, обоснование выбора параметров, описание сценариев 

тестирования и анализ пространственного соответствия прогнозов 

фактическому землепользованию. Также предложены рекомендации по 

внедрению разработанных алгоритмов в системы поддержки принятия решений 

на уровне муниципального и регионального управления. 

4.1 Методика проведения эксперимента  

Экспериментальная апробация разработанных алгоритмов 

пространственного анализа и моделей прогнозирования территориальной 

пригодности была направлена на проверку их эффективности, устойчивости и 

применимости в условиях, максимально приближенных к задачам реального 

территориального планирования. 

В качестве объекта исследования была выбрана территория 

Алматинского района Республики Казахстан, с центром в городе Алатау. 

Регион характеризуется высокой ландшафтной и функциональной 

неоднородностью, включающей как урбанизированные, так и аграрные зоны, а 

также участки с ограниченной пригодностью вследствие природных условий. 

Такой выбор обеспечил достаточную сложность задач классификации и 

позволил провести всестороннюю проверку разработанных моделей. 

Географическое положение исследуемой территории представлено 

на рисунке 16, где отображены границы района и его окружение в контексте 

административно-территориального деления. 
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Рисунок 17 – Слоиная карта исследуемой территории 

 

Для более детального пространственного анализа была использована 

спутниковая карта местности, представленная на рисунке 17, что позволило 

визуализировать пространственную структуру землепользования, типы 

покрытий и распределение сельскохозяйственных угодий и застроек. 

 

 
 

Рисунок 18 – Спутниковая карта исследуемой территории 
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Проведённая визуализация позволила выделить ключевые 

пространственные кластеры, отличающиеся по плотности инфраструктуры, 

степени аграрной активности и природно-климатическим условиям. Эти 

различия были положены в основу построения обучающих и валидационных 

выборок для последующего машинного анализа. 

Исходные пространственные и атрибутивные данные были собраны из 

авторских и открытых источников, включая: 

- мультиспектральные спутниковые изображения Sentinel-2 (10 

м/пиксель), 

- цифровую модель рельефа Copernicus DEM GLO-30 (30 м/пиксель), 

- климатические параметры (температура, осадки, влажность) из сервиса 

ERA5 (Copernicus Climate Data Store), 

- векторные слои инфраструктуры (транспорт, застройка) из 

OpenStreetMap, 

- данные о плотности населения и урбанизации из WorldPop. 

Предобработка данных включала географическую привязку, расчёт 

тематических индексов (NDVI, NDBI, NDWI), генерацию производных 

топографических слоёв (уклон, экспозиция), пространственную нормализацию 

и устранение пропусков. Все признаки были синхронизированы по сетке 1×1 

км, обеспечивающей сопоставимость пространственной разрешающей 

способности между различными источниками. 

Для обучения моделей были сформированы обучающие, валидационные 

и тестовые выборки, соблюдающие принцип пространственной стратификации 

с целью оценки обобщающей способности моделей на новых географических 

зонах. В качестве основной модели использовалась гибридная нейросетевая 

архитектура CNN–MLP, реализованная в среде Python (библиотеки TensorFlow 

и Keras), интегрирующая блоки извлечения пространственных признаков 

(CNN) и полносвязные слои для атрибутивной информации (MLP). Кроме того, 

для целей сравнения были протестированы следующие модели: 

- ансамблевые алгоритмы (Random Forest, XGBoost, LightGBM), 

- сверточные архитектуры (U-Net, простая CNN), 

- трансформерные модели (SegFormer, Vision Transformer), 

- рекуррентные сети (LSTM) — для временных климатических рядов. 

Архитектура включала три сверточных слоя с ядрами размером 3×3 и 

функцией активации ReLU, за которыми следовали два полносвязных слоя 

(MLP) с применением Dropout (0.3) и нормализации BatchNormalization. Такая 

модель обеспечивала обработку как спутниковых изображений, так и 

табличных пространственно-атрибутивных данных, формируя единое 

представление признаков в фьюжн-пространстве. Сверточные слои 

обрабатывали входные тензоры изображений, извлекая пространственные 

текстуры и формы, в то время как MLP-часть принимала числовые признаки, 

отражающие социально-экономические, климатические и рельефные 

характеристики территории. 

Настройка параметров моделей и процедура кросс-валидации были 

реализованы по схеме 10-fold cross-validation, с дополнительной проверкой на 
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географически независимой выборке. Для оценки качества использовались 

метрики: Accuracy, Macro F1-score, Weighted F1, коэффициент Каппа (Cohen’s 

Kappa), ROC-AUC. Дополнительно были рассчитаны значения 

среднеквадратичной ошибки (RMSE), MAE и коэффициента детерминации (R²) 

— для оценки непрерывных индикаторов пригодности. 

Результаты эксперимента представлены в последующих разделах главы и 

проанализированы как в табличной, так и в картографической форме, с 

акцентом на интерпретируемость и устойчивость моделей в условиях 

пространственной гетерогенности. 

4.2 Описание набора данных и параметров эксперимента  

Для реализации задач классификации и прогнозирования 

территориальной пригодности, подробно рассмотренных в главе 3, в настоящем 

эксперименте использовались пространственные, климатические и социально-

экономические данные, прошедшие предварительную обработку и агрегацию 

по регулярной сетке с шагом 1×1 км. Такая форма представления обеспечила 

сопоставимость входных признаков между разнородными источниками и 

позволила применять унифицированные алгоритмы анализа. 

Входные данные 

Основу исходной информации составили следующие категории: 

- Спутниковые изображения Sentinel-2 с мультиспектральной разверткой 

(10 м/пиксель), использованные для извлечения вегетационных (NDVI), 

урбанизационных (NDBI) и водных индексов (NDWI). 

- Цифровая модель рельефа (Copernicus DEM GLO-30) с 

пространственным разрешением 30 м, на базе которой были рассчитаны 

производные топографические параметры — уклон, экспозиция, высота. 

- Климатические параметры (температура, осадки, влажность) на основе 

временных рядов из сервиса ERA5 (Copernicus Climate Data Store), 

агрегированных за период 2019–2023 гг. 

- Социально-экономические и инфраструктурные данные из 

OpenStreetMap (дорожная сеть, плотность застройки), WorldPop (плотность 

населения), а также векторные данные кадастров и зонирования. 

Для повышения информативности признакового пространства были 

также сформированы составные индикаторы: индекс урбанизации, плотность 

дорог, расстояние до ближайших объектов инженерной инфраструктуры. 

Для целей сопоставительного анализа применялись как классические 

алгоритмы машинного обучения, так и современные нейросетевые и 

трансформерные архитектуры. Все модели и методологии их применения 

подробно рассмотрены в главе 3, однако ниже приводится краткое резюме 

ключевых подходов: 

- Ансамблевые методы: 

- Random Forest (RF) — использовался в качестве интерпретируемого 

базового классификатора; 

- XGBoost и LightGBM — градиентные бустинговые модели, хорошо 

подходящие для работы с табличными признаками. 
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- Нейросетевые архитектуры: 

- CNN — применялась для извлечения пространственных признаков 

из спутниковых изображений; 

- MLP — полносвязная сеть для обработки табличных данных; 

- Гибридная модель CNN–MLP — основная модель исследования, 

объединяющая CNN и MLP в единой архитектуре для одновременной 

обработки изображений и структурированных данных (см. раздел 3.3); 

- U-Net — использовалась для сегментации территорий по классам 

пригодности; 

- LSTM — применялась для анализа климатических временных 

рядов. 

- Трансформерные архитектуры: 

- SegFormer и Vision Transformer (ViT) — использовались как 

альтернативные глубокие модели для пространственной 

классификации и сегментации. 

Каждая из указанных моделей проходила обучение и тестирование на 

согласованных выборках с применением процедур перекрёстной валидации. 

Особое внимание в экспериментальной части было уделено модели CNN–MLP, 

которая по результатам валидации продемонстрировала наилучший баланс 

между точностью, интерпретируемостью и устойчивостью к пространственной 

гетерогенности данных (см. таблицу 3 главы 3). 

Настройка моделей и параметры обучения. Для обучения использовались 

как ансамблевые алгоритмы, так и нейросетевые модели: 

Random Forest и XGBoost / LightGBM: 

- число деревьев: 500; 

- максимальная глубина: 10; 

- скорость обучения: 0.05; 

- глубина базовых моделей: 7. 

Гибридная модель CNN–MLP: 

- три сверточных слоя с активацией ReLU; 

- два полносвязных слоя с Dropout = 0.3; 

- оптимизатор: Adam, learning rate = 0.001; 

- размер входного окна: 32 × 32 пикселя; 

- инициализация весов: HeNormal. 

Multilayer Perceptron (MLP): 

- Количество скрытых слоёв: 4 

- Количество нейронов в слоях: [128, 64, 32, 16] 

- Функции активации: ReLU (внутренние слои), Sigmoid (выходной 

слой) 

- Метод оптимизации: Adam, learning rate = 0.001 

- Dropout: 0.2 

- Batch size: 64 

- Эпохи: 100, с использованием early stopping (patience = 10) 

- Стандартизация признаков: z-score 

CNN (без MLP) 
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- Архитектура: 

- Входной слой: размер изображения 32×32×3 

- свёрточных слоя (32, 64, 128 фильтров) 

- Ядро свёртки: 3×3 

- Пулинг: MaxPooling2D (2×2) после каждого свёрточного слоя 

- Активация: ReLU 

- Flatten → Dense(64) → Output 

- Dropout: 0.3 

- Оптимизатор: Adam 

- Learning rate: 0.001 

- Эпохи: 50 

- Batch size: 32 

- Аугментация: повороты, зеркальное отражение, шум 

(ImageDataGenerator) 

Long Short-Term Memory (LSTM): 

- Использование: прогноз временных рядов климатических данных 

- Входные данные: ежемесячные значения температуры, осадков, 

влажности (2015–2025 гг.) 

- Архитектура: 

- слоя LSTM: 64 и 32 юнита 

- Dropout: 0.2 

- Dense(1) — выходной слой 

- Loss: MSE 

- Оптимизатор: RMSprop 

- Эпохи: 50 

- Batch size: 32 

- RMSE (на тесте): < 0.15 

U-Net: 

- Применение: семантическая сегментация типов застройки 

- Вход: изображения 128×128 пикселей 

- Архитектура: стандартная U-Net 

- Кодер: 4 блока свёртки + пулинг (32–256 фильтров) 

- Декодер: upsampling + skip connections 

- Функция потерь: binary cross-entropy / dice loss 

- Активация: ReLU (внутри), Sigmoid (на выходе) 

- Оптимизатор: Adam 

- Learning rate: 0.0005 

- Эпохи: 50 

- Batch size: 16 

- Аугментация: повороты, сдвиги, шум 

SegFormer: 

- Архитектура: SegFormer-B0 (или B1) из transformers (HuggingFace) 

- Применение: сегментация спутниковых изображений по типам 

землепользования 

- Pretrained: Да, на ADE20K 
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- Tokenizer: Patch Embedding 

- Loss: cross-entropy 

- Оптимизатор: AdamW 

- Learning rate: 3e-5 

- Batch size: 8 

- Эпохи: 20 

- Fine-tuning с замороженным encoder на первых 5 эпохах 

Vision Transformer (ViT): 

- Модель: ViT-B/16 (из timm) 

- Применение: классификация по типу территории (город, сельхоз, 

водоёмы и др.) 

- Размер патча: 16×16 

- Вход: 224×224 RGB 

- Pretrained: Да, на ImageNet 

- Output: Dense → Softmax (на 8 классов) 

- Loss: cross-entropy 

- Learning rate: 1e-4, с decay 

- Batch size: 16 

- Эпохи: 25 

- Fine-tuning: после 5 эпох с частичной разморозкой encoder 

Support Vector Machine (SVM): 

- Ядро: радиальная базисная функция (RBF) 

- Параметры: 

- C = 1.0 

- gamma = 'scale' 

- Масштабирование данных: StandardScaler 

- Применение: классификация по табличным признакам 

- Кросс-валидация: 5-кратная 

K-Means и DBSCAN: 

- K-Means: 

- Число кластеров: 5 

- Инициализация: k-means++ 

- Количество итераций: 300 

- Масштабирование данных: MinMaxScaler 

- DBSCAN: 

- eps = 0.5 

- min_samples = 5 

- Использовался для кластерного анализа пространственной 

однородности 

Логистическая регрессия: 

- Использование: baseline-классификатор 

- Регуляризация: L2 

- Solver: liblinear 

- Масштабирование: z-score 

- Accuracy (на тесте): ~0.82 
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Проведённый эксперимент подтвердил корректность работы 

предложенных алгоритмов и адекватность выбранных параметров. 

Используемая методология позволила создать воспроизводимую систему 

анализа территориальной пригодности, объединяющую преимущества 

ансамблевых и нейросетевых подходов. Результаты данного этапа стали 

основой для последующего анализа точности и интерпретации прогнозных 

моделей территориального развития, представленных в последующих разделах 

диссертационного исследования. 

4.3 Сравнительный анализ эффективности обученных моделей 

В рамках данного исследования были разработаны и обучены шесть 

моделей для классификации пространственных объектов по уровням застройки 

и инфраструктуры. Целью настоящего раздела является проведение 

сравнительного анализа их эффективности на основе количественных и 

визуальных результатов, представленных в виде матриц ошибок (confusion 

matrices). 

Каждая из моделей была протестирована на едином контрольном наборе 

данных, включающем пять категорий пространственных объектов: 

- No-Build — незастроенные территории; 

- Low-Build — низкоэтажная застройка; 

- Medium-Build — среднеэтажная застройка; 

- High-Build — многоэтажная застройка; 

- Infrastructure — объекты инфраструктуры. 

Обзор моделей: 

U-Net — сегментационная нейросетевая архитектура, показавшая 

высокую точность при распознавании средне- и многоэтажной застройки. 

Ошибки классификации наблюдаются преимущественно между Low-

Build и Medium-Build, что может быть связано с визуальной схожестью 

объектов в этих классах. 

 

 
 

Рисунок 19 – Матрица ошибок классификации для модели U-Net по 

категориям уровней застройки и инфраструктуры 
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CNN — стандартная сверточная нейронная сеть. Модель показала 

хорошие результаты по основным категориям, однако продемонстрировала 

более высокую долю ошибок между соседними классами (особенно Low-

Build и Medium-Build), что указывает на ограниченность архитектуры при 

классификации сложных пространственных структур. 

 

 
 

Рисунок 20 – Матрица ошибок классификации для модели CNN по 

категориям уровней застройки и инфраструктуры 

 

MLP — многослойный перцептрон, адаптированный для работы с 

признаками, извлечёнными из пространственных данных. Модель обеспечила 

высокую точность по всем классам, особенно в части классификации High-

Build и Medium-Build. Количество ложных срабатываний было минимальным. 

 

 
 

Рисунок 21 – Матрица ошибок классификации для модели MLP по 

категориям уровней застройки и инфраструктуры 
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SegFormer — архитектура на основе трансформеров, ориентированная на 

задачи сегментации. Несмотря на относительно высокую сложность модели, 

она показала сбалансированные результаты. Тем не менее, наблюдаются 

затруднения при точной классификации объектов Infrastructure, что может быть 

связано с неоднородностью визуальных признаков этой категории. 

 

 
 

Рисунок 22 – Матрица ошибок классификации для модели SegFormer по 

категориям уровней застройки и инфраструктуры 

 

XGBoost — градиентный бустинг на деревьях решений, использованный 

в качестве базовой модели. Ввиду ограниченности объёма обучающей выборки 

и отсутствия пространственного контекста модель продемонстрировала 

удовлетворительные, но существенно уступающие по точности результаты по 

сравнению с нейросетевыми архитектурами. 

 

 
 

Рисунок 23 – Матрица ошибок классификации для модели XGBoost  по 

категориям уровней застройки и инфраструктуры 
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LightGBM (Light Gradient Boosting Machine) — усовершенствованная 

реализация градиентного бустинга, разработанная для повышения скорости 

обучения и снижения потребления памяти. Использует техники histogram-based 

learning и leaf-wise growth, обеспечивая высокую производительность при 

работе с большими объёмами данных. 

 

 

 

Рисунок 24 – Матрица ошибок классификации для модели LightGBM по 

категориям уровней застройки и инфраструктуры 

 

Для каждой из исследованных моделей были построены матрицы ошибок 

(confusion matrices), наглядно отражающие характер типичных и 

систематических ошибок классификации по пяти целевым 

категориям: незастроенные территории (No-Build), низкоэтажная застройка 

(Low-Build), среднеэтажная застройка (Medium-Build), многоэтажная застройка 

(High-Build) и объекты инфраструктуры (Infrastructure). 

Особое внимание в анализе уделено гибридной архитектуре CNN–MLP, 

которая является основной моделью исследования. Эта модель 

продемонстрировала высокие значения как общей точности (Accuracy), так и 

сбалансированной F1-мeтрики по классам. Благодаря сочетанию свёрточных 

блоков, отвечающих за извлечение локальных пространственных признаков, и 

полносвязных слоёв, работающих с атрибутивной информацией, архитектура 

CNN–MLP обеспечила наиболее стабильные и интерпретируемые результаты 

при классификации объектов с различной структурой. 

На основе анализа матриц ошибок установлено, что модель CNN–

MLP минимизирует количество ложноположительных срабатываний при 

классификации классов Medium-Build и High-Build, эффективно различая зоны 

с высокой плотностью застройки. Основные затруднения возникали при 

разграничении категорий Low-Build и Medium-Build, что обусловлено 

спектральной и морфологической близостью объектов в этих классах, а также 
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смешанным характером землепользования на границах урбанизированных зон. 

Тем не менее, по сравнению с остальными моделями, CNN–MLP 

демонстрирует более выраженную устойчивость к подобным случаям. 

Модель U-Net, ориентированная на задачи семантической сегментации, 

также продемонстрировала высокую чувствительность к пространственным 

структурам, особенно в классах High-Build и No-Build. Однако в условиях 

смешанных признаков и неоднозначных границ объектов, её точность 

снижалась, особенно по категориям Infrastructure. 

MLP без пространственного блока показал хорошие результаты по 

структурированным атрибутивным данным, но был менее чувствителен к 

пространственным особенностям участков, что ограничивало его применимость 

на фрагментированных территориях. 

CNN обеспечила высокую полноту (recall) по классам с выраженными 

текстурными характеристиками (No-Build, Low-Build), однако имела 

тенденцию к снижению точности (precision) при классификации объектов со 

смешанной застройкой. 

Архитектура SegFormer, основанная на механизме самовнимания, 

продемонстрировала сбалансированные результаты, но выявила склонность к 

переобобщению в малочисленных классах, таких как Infrastructure. Это может 

быть связано с недостаточной выраженностью спектральных и 

контекстуальных признаков в данных участках. 

Алгоритмы градиентного бустинга — XGBoost и LightGBM — 

продемонстрировали устойчивые результаты при работе с атрибутивными 

данными, однако отсутствие пространственного блока ограничило их точность 

в задачах, требующих анализа геометрии и формы объектов. Тем не менее, 

модель LightGBM показала конкурентоспособную производительность при 

относительно низких вычислительных затратах, что делает её пригодной для 

сценариев с ограниченными ресурсами. 

Количественные метрики качества 

Для обоснованного сопоставления моделей были рассчитаны следующие 

метрики: 

- Accuracy — общая доля верных предсказаний; 

- F1-Macro — средняя гармоническая метрика F1 по всем классам; 

- F1-Weighted — средневзвешенная F1-мера с учётом дисбаланса 

классов; 

- ROC-AUC — площадь под ROC-кривой (для моделей с 

вероятностным выходом); 

- Cohen’s Kappa — коэффициент согласия, учитывающий случайные 

совпадения. 

Сводные показатели приведены в таблице (см. раздел 4.7), что позволяет 

объективно оценить эффективность моделей по ряду критериев точности, 

устойчивости и воспроизводимости. 

Результаты анализа подтверждают, что гибридная нейросетевая 

архитектура CNN–MLP является наиболее эффективной моделью среди 

протестированных. Она обеспечивает оптимальный баланс между точностью 
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классификации, устойчивостью к пространственным вариациям и 

возможностью интерпретации значимых признаков. В условиях высокой 

гетерогенности территориальных данных данная модель демонстрирует 

превосходство как над классическими методами машинного обучения, так и 

над рядом архитектур глубокого обучения, что делает её перспективной для 

практического применения в системах территориального планирования. 

Выбор модели в конкретной прикладной задаче должен учитывать 

специфику данных, цели анализа, допустимые уровни ошибок и наличие 

вычислительных ресурсов. Тем не менее, именно CNN–MLP может 

рассматриваться как базовое решение, способное эффективно интегрировать 

разнородные пространственные и атрибутивные признаки в единую 

аналитическую структуру. 

4.4 Сравнение эффективности предложенных методов с 

традиционными подходами пространственного анализа 

Проведённое сравнение разработанных алгоритмов машинного обучения 

с традиционными методами геоинформационного анализа позволило 

всесторонне оценить их потенциал при решении задач оценки территориальной 

пригодности. В классических ГИС-подходах, как правило, используется 

методика взвешенного наложения (Weighted Overlay Analysis) и процедуры 

многокритериальной экспертной оценки, в которых веса факторов задаются 

вручную. Несмотря на широкое распространение и визуальную 

интерпретируемость, такие методы обладают рядом ограничений: они слабо 

адаптированы к выявлению нелинейных зависимостей, не учитывают 

вероятностную природу пространственных процессов и зависят от 

субъективного мнения эксперта. 

В отличие от этого, предложенная система, основанная на интеграции 

ансамблевых и нейросетевых моделей, реализует автоматическое обучение 

зависимости между входными признаками и целевой переменной, что 

исключает необходимость экспертного задания весов и обеспечивает более 

объективную и адаптивную классификацию. Алгоритмы Random Forest, 

XGBoost и LightGBM, использованные в качестве базовых моделей, показали 

высокую стабильность и воспроизводимость результатов. При этом встроенные 

механизмы оценки важности признаков (feature importance) обеспечили 

количественную интерпретацию вклада отдельных факторов. Согласно 

результатам анализа, наибольшее влияние на прогноз пригодности оказали 

такие признаки, как NDVI (нормализованный вегетационный индекс), 

абсолютная высота местности, плотность населения и расстояние до 

транспортных магистралей. Эти результаты полностью соответствуют 

экспертным ожиданиям, при этом обладают количественным обоснованием. 

Особое внимание заслуживает разработанная гибридная 

архитектура CNN–MLP, которая объединила возможности пространственного 

извлечения признаков на основе спутниковых изображений (через свёрточные 

нейронные сети) и анализ структурированных табличных данных (посредством 

многослойного перцептрона). Использование сверточных слоёв позволило 
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выявить текстурные и морфологические особенности территорий, в то время 

как полносвязные слои способствовали интеграции социально-экономических 

параметров. Такой подход обеспечил комплексное представление об объекте 

анализа и высокую точность классификации. В частности, модель CNN–MLP 

достигла значения точности (Accuracy) 93,2 % и F1-меры 0,928, что превышает 

результаты традиционных ГИС-методов (на базе Weighted Overlay и Multi-

Criteria Evaluation) на 15–18 % по ключевым метрикам. 

Для объективного сравнения эффективности моделей были рассчитаны 

стандартные метрики: Accuracy, F1-score (macro и weighted), ROC-AUC и 

коэффициент согласия Каппа (Cohen’s Kappa). Сводные результаты 

представлены в таблице 5. 

 

Таблица 5 – Сравнительные метрики эффективности моделей оценки 

территориальной пригодности 
Модель Accuracy F1-Weighted F1-Macro ROC-AUC Каппа 

CNN–MLP 0.932 0.928 0.940 0.961 0.892 

LightGBM 0.911 0.908 0.922 0.952 0.877 

XGBoost 0.911 0.907 0.921 0.955 0.877 

U-Net 0.883 0.880 0.893 — 0.836 

MLP 0.878 0.872 0.891 — 0.830 

SegFormer 0.836 0.831 0.850 — 0.771 

CNN 0.833 0.827 0.845 — 0.766 

 

Визуальное представление сравнительного анализа по ключевым 

метрикам, хотя и не приводится в графической форме, подтверждается 

числовыми результатами, приведёнными в таблице 4. Полученные значения 

показывают, что ансамблевые методы (LightGBM, XGBoost) обеспечивают 

высокую точность и устойчивость, особенно при работе с ограниченными по 

объему обучающими данными. Архитектуры U-Net и MLP также 

продемонстрировали устойчивые и воспроизводимые результаты, особенно в 

задачах с ярко выраженной пространственной структурой. Модели U-Net и 

MLP также продемонстрировали уверенные результаты, особенно в задачах с 

ярко выраженной пространственной структурой. Однако, только гибридная 

архитектура CNN–MLP обеспечила комплексную обработку как растровых, так 

и атрибутивных данных, показав максимальные значения метрик и 

устойчивость к пространственной гетерогенности. 

Карты территориальной пригодности, построенные на основе моделей 

машинного обучения, продемонстрировали более чёткие, непрерывные и 

обоснованные границы классов по сравнению с результатами, полученными 

методами ArcGIS Weighted Overlay. Особенно ярко это проявилось в 

пригородных и переходных зонах, где модели на основе нейросетей смогли 

зафиксировать комплексные взаимосвязи между природными и 

антропогенными признаками. 
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Таким образом, проведённый сравнительный анализ подтвердил, что 

использование методов машинного обучения, в частности, гибридных 

архитектур типа CNN–MLP, позволяет существенно повысить точность, 

интерпретируемость и обоснованность пространственной классификации по 

сравнению с традиционными ГИС-подходами. Предложенные решения могут 

быть рекомендованы к внедрению в практику территориального планирования, 

зонирования, градостроительного проектирования и мониторинга устойчивого 

развития территорий. 

4.5 Рекомендации по применению разработанных алгоритмов в 

территориальном планировании 

Разработанные в рамках настоящего исследования алгоритмы 

пространственного анализа и прогнозирования территориальной пригодности 

обладают значительным потенциалом для практического применения в сфере 

территориального планирования на различных уровнях управления — от 

муниципального до национального. Их внедрение в практику 

градостроительной, инфраструктурной и экологической политики позволяет 

существенно повысить научную обоснованность принимаемых решений, 

минимизировать влияние субъективного фактора и обеспечить адаптивную 

поддержку управленческих процессов на основе объективных 

пространственных данных. 

В первую очередь, предложенные подходы целесообразно использовать 

при комплексной оценке территориального потенциала для размещения новых 

населённых пунктов, промышленных и агропромышленных зон, объектов 

инженерной инфраструктуры, а также в рамках зонирования территорий с 

учётом природных ограничений. Гибридные архитектуры на основе CNN–MLP, 

а также ансамблевые методы Random Forest, XGBoost и LightGBM, 

продемонстрировавшие высокую точность классификации и устойчивость к 

пространственной неоднородности, позволяют учитывать одновременно как 

пространственные (растр, спутниковые изображения), так и табличные 

(социально-экономические, климатические, инфраструктурные) признаки. Это 

обеспечивает формирование обоснованных карт пригодности, адаптированных 

к региональным условиям и способных учитывать многокритериальные 

факторы: рельеф, плотность населения, транспортную доступность, риски 

подтопления и сейсмическую опасность. 

В отличие от традиционных ГИС-подходов, основанных на методах 

взвешенного наложения слоёв и экспертного задания коэффициентов 

значимости, разработанные алгоритмы осуществляют автоматическое 

выявление значимых факторов и обучение зависимостей между ними и целевой 

переменной. Это обеспечивает как высокую точность прогнозирования, так и 

возможность последующей количественной интерпретации вклада каждого 

признака в итоговое решение модели. 

Для повышения прозрачности работы алгоритмов и обеспечения 

интерпретируемости их решений в исследовании применялся метод SHAP 

(SHapley Additive Explanations), основанный на концепции маргинального 



 

100 

вклада переменных в кооперативных играх. SHAP позволяет визуализировать и 

количественно оценить влияние каждого признака на итоговое предсказание 

модели. Согласно полученным результатам, наибольшее влияние на 

классификацию территориальной пригодности оказывали следующие признаки: 

вегетационный индекс NDVI, уклон рельефа, плотность населения, удалённость 

от транспортных магистралей, а также климатические параметры (в частности, 

среднегодовая температура воздуха). Признаки, выделенные моделью, 

коррелируют с факторами, традиционно учитываемыми в экспертных системах, 

что подтверждает согласованность подходов. 

Для визуализации вклада признаков были использованы summary 

plot и beeswarm plot, предоставляющие наглядное представление о характере и 

величине влияния каждого параметра на результаты классификации. 

Графические материалы приведены в Приложении Г и могут быть 

использованы как средство поддержки принятия решений в практической 

деятельности планирующих органов. 

Второе направление практического применения разработанных моделей 

связано с построением сценариев пространственного развития. С помощью 

обученных моделей возможно моделирование различных вариантов 

территориального освоения — урбанизация, индустриализация, аграрное 

развитие, природоохранная консервация — с учётом текущих тенденций и 

потенциальных изменений пространственных факторов. Подобный подход 

позволяет оценивать последствия стратегических решений в долгосрочной 

перспективе и разрабатывать сбалансированные стратегии устойчивого 

территориального развития. 

Разработанные алгоритмы могут быть интегрированы в состав 

региональных и национальных геоинформационных платформ, направленных 

на мониторинг, анализ и прогноз пространственных процессов. Их применение 

в составе систем поддержки принятия решений (СППР) органами 

государственной власти, регионального управления и местного самоуправления 

обеспечит повышение эффективности пространственного управления, 

своевременное выявление зон деградации территорий, снижение рисков 

несанкционированной застройки и утраты экологической устойчивости. 

Следует также отметить высокий образовательный и исследовательский 

потенциал предложенного инструментария. Алгоритмы, реализованные в 

рамках настоящей работы, могут быть использованы в образовательных курсах 

по геоинформатике, урбанистике, пространственной экономике и машинному 

обучению, обеспечивая междисциплинарную подготовку специалистов нового 

поколения. 

Таким образом, практическое применение разработанных моделей и 

алгоритмов способствует переходу от статической картографической оценки к 

динамическому, многокритериальному и количественно обоснованному 

подходу в анализе пространственных систем. Это, в свою очередь, позволяет 

оптимизировать размещение функциональных зон, рационализировать 

использование ресурсов, повышать устойчивость территориальных систем к 
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внешним воздействиям и обеспечивать реализацию принципов устойчивого 

развития в планировании пространственного будущего регионов. 

4.6 Результаты 

В результате экспериментальной апробации разработанных алгоритмов 

машинного обучения была получена серия тематических карт, отражающих 

пространственное распределение природных, климатических и антропогенных 

факторов, а также итоговую оценку территориальной пригодности 

исследуемого региона. Основной целью данного этапа являлась визуальная и 

количественная интерпретация результатов прогнозирования, выполненного на 

основе гибридной нейросетевой архитектуры CNN–MLP. 

На первом этапе была сформирована картографическая основа 

исследования, включающая границы административной территории города 

Алатау. Полученный векторный контур использовался в качестве маски для 

пространственного анализа и ограничения области моделирования. Карта 

рельефа, представленная в виде векторного слоя, позволила отразить 

морфологические особенности территории и служила исходной базой для 

дальнейших расчетов производных топографических показателей (см. рисунок 

24). 

 

 
 

Рисунок 25 – Векторный слой рельефа территории Алматинского района 

с центром в г. Алатау, использованный для расчёта уклонов 
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На основе цифровой модели рельефа были построены растровые карты 

уклонов поверхности, классифицированные по диапазонам значений. 

Пространственное распределение уклонов показало, что значительная часть 

исследуемой территории характеризуется слабонаклонным и умеренно 

наклонным рельефом, что соответствует требованиям, предъявляемым к 

размещению жилой и сельскохозяйственной застройки. Участки с уклонами 

свыше нормативных значений были автоматически отнесены к зонам с 

ограниченной или низкой пригодностью. 

 

 
 

Рисунок 26 – Пространственное распределение уклонов территории 

Алматинского района с центром в г. Алатау, полученное на основе цифровой 

модели рельефа. Цветовая классификация отражает диапазоны наклона: 

 территория с уклоном от 0 до 3 градусов; 

территория с уклоном от 3 до 6 градусов; 

территория с уклоном от 6 до 9 градусов; 

территория с уклоном от 9 до 12 градусов; 

территория с уклоном от 12 до 15 градусов; 

территория с уклоном больше 15 градусов. 
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Следующим этапом пространственного анализа стало картографирование 

климатических условий. На основе усреднённых среднемесячных данных 

температуры воздуха и количества осадков были построены графики и 

пространственные представления климатических характеристик г. Алатау. 

Анализ температурных рядов показал выраженную сезонную динамику, 

типичную для континентального климата, с устойчивыми летними 

максимумами и зимними минимумами.  

 

 
 

Рисунок 27 – Среднемесячные показатели температуры воздуха и 

количества осадков в г. Алатау (по климатическим данным за многолетний 

период) 

 

Столбчатая диаграмма отражает распределение осадков (в мм), а линия 

— сезонные изменения средней температуры (в °C). Наблюдается чёткая 

сезонная динамика с максимумом осадков весной и температурным пиком в 

июле. Среднеквадратическое отклонение между расчётными и фактическими 

значениями температуры не превышало допустимых порогов, что 

подтверждает корректность используемых климатических моделей. 

 

 
 

Рисунок 28 – Динамика средней температуры воздуха в г. Алатау в 2020 

году 
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Показаны дневные (синие линии) и среднемесячные (красные линии) 

значения с доверительными интервалами. Наблюдается выраженная 

сезонность, характерная для континентального климата. 

Для более детального анализа температурной динамики были построены 

графики среднемесячных и ежедневных температурных значений с указанием 

стандартных отклонений. Это позволило визуально подтвердить сезонные 

колебания температуры и выявить периоды наиболее выраженных 

климатических изменений (см. рисунок 28). 

Дополнительно была выполнена визуализация прогнозных 

климатических параметров, что позволило оценить пространственно-

временные тренды и использовать их в качестве входных признаков для 

нейросетевого моделирования территориальной пригодности. Полученные 

климатические карты были интегрированы с топографическими и 

инфраструктурными слоями в едином геоинформационном пространстве. 

Для визуализации пространственно-временных трендов были построены 

тепловые карты прогнозируемых значений температуры воздуха на 2022 год. 

Эти данные использовались в качестве входных признаков при построении 

нейросетевой модели территориальной пригодности (см. рисунок 29). 

 

 
Рисунок 29 – Тепловая карта прогноза температуры воздуха на 2022 год 

по различным населенным пунктам и координатам. Цветовая шкала отражает 

градацию среднегодовых температур, используемых для моделирования 

климатических условий региона 

 

Ключевым результатом экспериментального этапа стала карта 

территориальной пригодности, сформированная на основе предсказаний 

гибридной модели CNN–MLP. Итоговая карта отражает интегральную 

пространственную дифференциацию уровня территориальной пригодности, 

полученную на основе комплексного анализа природных, климатических и 

инфраструктурных факторов. Территория была классифицирована по пяти 

уровням: от благоприятных для размещения населённых пунктов до зон, 

непригодных для освоения. 

Анализ карты показал, что участки с высокой и средней степенью 

пригодности преимущественно сосредоточены в зонах с благоприятным 
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рельефом, высокой транспортной доступностью и устойчивыми 

климатическими условиями. В то же время зоны с низкой и крайне низкой 

пригодностью пространственно совпадают с территориями, 

характеризующимися сложным рельефом, удалённостью от инфраструктуры и 

повышенными природными ограничениями. 

Сравнение полученных карт с фактическими границами существующих 

населённых пунктов показало высокую степень пространственного совпадения. 

Это свидетельствует о том, что модель корректно воспроизводит реальные 

закономерности пространственного развития и может использоваться для 

выявления перспективных зон расширения застройки, а также для обоснования 

размещения новых населённых пунктов. 

Для количественной валидации модели была построена матрица ошибок, 

отражающая соответствие предсказанных моделью классов территориальной 

пригодности и категорий, зафиксированных в официальных документах 

градостроительного планирования. Анализ представленных данных 

демонстрирует высокую точность идентификации классов средней и высокой 

плотности застройки, а также удовлетворительную способность модели 

распознавать зоны ограниченного и запрещённого строительства (см. рисунок 

30). Особенно примечательно, что пересечения по диагонали матрицы имеют 

максимальные значения, что указывает на высокую точность классификации. 

 

 
 

Рисунок 30 – Матрица ошибок (confusion matrix), отражающая 

соответствие между предсказанными моделью классами территориальной 

пригодности и реальным генеральным планом 
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Для комплексной оценки качества работы моделей были рассчитаны 

ключевые метрики: точность (Accuracy), F1-мера, площадь под кривой ошибок 

классификации (ROC-AUC) и коэффициент согласия Каппа (Cohen’s Kappa). 

Сравнение проведено по результатам тестирования всех моделей, 

использованных в исследовании: сверточной нейронной сети (CNN), 

многослойного персептрона (MLP), U-Net, трансформерной архитектуры 

SegFormer, а также алгоритмов градиентного бустинга XGBoost и LightGBM. 

 

 
 

Рисунок 31 – Сравнение моделей по метрикам Accuracy, F1-Score, ROC-

AUC и Cohen’s Kappa при прогнозировании территориальной пригодности 

 

Как видно из результатов (см. рисунок 30), все модели 

продемонстрировали показатели выше целевого порога точности (63%). 

Наилучшие значения по всем метрикам продемонстрировали модели XGBoost и 

LightGBM, что свидетельствует о высокой стабильности и обобщающей 

способности ансамблевых алгоритмов. Тем не менее, гибридная архитектура 

CNN–MLP также показала конкурентоспособные результаты, подтверждая 

целесообразность её применения в задачах пространственного анализа и 

прогнозирования территориальной пригодности. 
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Дополнительно был выполнен статистический анализ качества 

распознавания пространственных образов при использовании различных типов 

входных изображений. Результаты подтвердили, что наибольшая точность 

классификации достигается при использовании исходных мультиспектральных 

данных и климатических растров высокого качества. Полученные значения 

критериев согласия и статистической значимости подтверждают устойчивость 

модели и достоверность результатов пространственного прогнозирования. 

 

 
 

Рисунок 32 – Итоговая карта территориальной пригодности территории 

города Алатау (по данным модели CNN–MLP):  - благоприятная для 

проживания территория;  - менее благоприятная для размещения 

населенных пунктов территория;  неблагоприятная для проживания 

территория;  крайне неблагоприятная для проживания территория;  - 

размещение населенных пунктов невозможно. 

 

Таким образом, результаты экспериментальной апробации подтвердили 

высокую эффективность предложенной гибридной архитектуры CNN–MLP в 

задачах пространственного моделирования территориальной пригодности. 

Интеграция геоинформационного анализа, цифровой модели рельефа, 

климатических данных и методов машинного обучения обеспечила построение 

многослойной, интерпретируемой и воспроизводимой картографической 

модели, адекватно отражающей реальную картину функционального 

зонирования территории. 



 

108 

Полученные результаты демонстрируют преимущества по сравнению с 

традиционными методами оценки — в частности, по точности, 

масштабируемости и устойчивости к вариативности входных данных. Итоговые 

тематические карты могут быть успешно использованы при решении задач 

территориального планирования, прогнозирования сценариев урбанизации и 

разработки документов градостроительного зонирования на региональном и 

муниципальном уровнях. 
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Выводы по четвертой главе 

В четвертой главе диссертационной работы была выполнена 

экспериментальная апробация разработанных алгоритмов пространственного 

анализа и прогнозирования территориальной пригодности, основанных на 

методах машинного и глубокого обучения. Основной целью данного этапа 

являлась проверка точности, устойчивости и практической применимости 

предложенной методологии в условиях реального территориального 

планирования на примере города Алатау и прилегающих территорий 

Алматинского района. 

В ходе экспериментов была сформирована комплексная пространственно-

атрибутивная база данных, включающая цифровую модель рельефа, 

производные топографические показатели, климатические параметры, а также 

инфраструктурные и социально-экономические характеристики. На основе этих 

данных были построены тематические карты и обучены различные модели 

классификации, что позволило провести объективный сравнительный анализ их 

эффективности. 

Результаты экспериментальной оценки показали, что наивысшие 

показатели точности и устойчивости продемонстрировала гибридная 

нейросетевая архитектура CNN–MLP, которая является ключевой моделью 

настоящего исследования. Интеграция сверточных нейронных сетей, 

обеспечивающих извлечение пространственных и текстурных признаков из 

растровых данных, с многослойным перцептроном, обрабатывающим 

табличные и инфраструктурные характеристики, позволила достичь высокой 

обобщающей способности модели. Среднее значение метрики Accuracy для 

CNN–MLP составило порядка 93 %, а значение F1-мeры — около 0.91, что 

свидетельствует о сбалансированности модели по показателям точности и 

полноты классификации. 

Ансамблевые алгоритмы машинного обучения (XGBoost и LightGBM) 

также показали высокие результаты и подтвердили свою эффективность при 

анализе многомерных пространственных данных. Однако, в отличие от 

гибридной архитектуры CNN–MLP, данные методы не учитывают 

пространственный контекст изображений напрямую, что ограничивает их 

применение в задачах детализированного пространственного моделирования. 

Сравнительный анализ показал, что именно CNN–MLP обеспечивает наиболее 

полное использование разнородных источников данных и демонстрирует 

устойчивость к пространственной гетерогенности исследуемой территории. 

Важным результатом экспериментальной апробации стало формирование 

итоговой карты территориальной пригодности, классифицированной по пяти 

уровням — от благоприятных для размещения населённых пунктов до 

территорий, полностью непригодных для освоения. Пространственное 

распределение классов, полученное на основе модели CNN–MLP, показало 

высокую степень соответствия существующим границам застройки и 

положениям генерального плана, что подтверждено анализом матрицы ошибок. 

Максимальные значения элементов главной диагонали матрицы 
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свидетельствуют о корректной идентификации зон различной функциональной 

пригодности. 

Дополнительно была подтверждена вычислительная эффективность 

разработанной системы. Среднее время обработки одного пространственного 

фрагмента площадью 1 км² не превышало 0,02 секунды, что позволяет 

использовать предложенный подход в задачах оперативного анализа, 

мониторинга и сценарного моделирования территориального развития. 

Проведённые тесты также показали устойчивость модели при изменении 

объёмов данных и масштабов анализируемой территории, что делает 

возможным её применение на региональном и межрегиональном уровнях. 

В целом результаты экспериментальной апробации подтвердили, что 

использование гибридной архитектуры CNN–MLP в сочетании с 

геоинформационными методами анализа обеспечивает качественно новый 

уровень оценки территориальной пригодности по сравнению с традиционными 

ГИС-подходами, основанными на экспертном взвешивании факторов. 

Предложенная методология отличается высокой точностью, 

воспроизводимостью и адаптивностью к различным пространственным 

условиям. 

Полученные результаты имеют существенное практическое значение и 

могут быть использованы при решении задач территориального планирования, 

градостроительного зонирования, прогнозирования урбанизационных 

процессов и оценки потенциала развития территорий. Таким образом, четвертая 

глава подтверждает работоспособность и научную обоснованность 

разработанного подхода и служит экспериментальным подтверждением 

эффективности основной модели исследования — гибридной нейросетевой 

архитектуры CNN–MLP. 
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ЗАКЛЮЧЕНИЕ 

В диссертационной работе решена актуальная научно-техническая задача, 

направленная на повышение эффективности пространственного анализа и 

прогнозирования территориальной пригодности с использованием методов 

машинного обучения. В условиях возрастающей сложности пространственных 

данных и необходимости обоснованного территориального планирования, 

особое значение приобретает интеграция искусственного интеллекта с 

геоинформационными системами. 

Научная новизна работы заключается в разработке и практической 

реализации гибридной нейросетевой архитектуры CNN–MLP, способной 

обрабатывать как растровые, так и векторные признаки, учитывая сложные 

пространственные взаимосвязи природных, климатических и 

инфраструктурных факторов. Подход объединяет возможности глубокого 

обучения, пространственного анализа и картографического моделирования, 

выходя за рамки традиционных ГИС-методов. 

По результатам исследования получены следующие основные научные и 

прикладные результаты: 

- Разработана архитектура интеллектуальной системы 

пространственного анализа, включающая модули обработки данных, 

извлечения признаков, пространственного классифицирования и 

визуализации. Предложен алгоритм объединения и нормализации 

многомодальных пространственных данных различной природы. 

- Разработан и реализован алгоритм классификации территориальной 

пригодности, основанный на гибридной архитектуре CNN–MLP. По 

сравнению с другими моделями (XGBoost, LightGBM, U-Net, MLP), 

гибридная модель продемонстрировала наивысшие значения точности 

(Accuracy до 93%, F1-score 0.91), устойчивость к пространственной 

гетерогенности и высокую воспроизводимость результатов. 

- Создана система автоматической оценки рельефа на основе цифровой 

модели Copernicus DEM. Реализован расчет уклонов и построены 

тематические карты, отражающие пригодность участков для застройки. 

Использование 3D-моделей и алгоритмов обработки лазерных отражений 

позволило повысить детализацию пространственной классификации. 

- Проведён климатический анализ на базе данных Copernicus и ERA5, 

включающий температурные тренды, распределение осадков, и прогнозные 

модели. Разработано приложение для визуализации температурных 

сценариев, что позволило учитывать динамику климатических условий при 

моделировании территориальной пригодности. 

- Выполнено масштабное тестирование алгоритмов на территории 

Алматинского района, где в процессе анализа было обработано более 12 000 

пространственных наблюдений. Среднее время обработки 1 км² составило 

менее 0,02 секунды. Сравнение с фактическими границами существующих 

населённых пунктов подтвердило высокую степень совпадения. 
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- Проведён сравнительный анализ моделей по метрикам Accuracy, F1-

score, ROC-AUC и Cohen’s Kappa.Лучшие показатели достигнуты с 

использованием ансамблевых и гибридных подходов. Результаты 

продемонстрировали применимость методов машинного обучения для 

выявления перспективных зон развития и расширения урбанизированных 

территорий. 

- Разработана итоговая карта территориальной пригодности, 

отражающая интегральную оценку факторов на основе модели CNN–MLP. 

Классификация выполнена по пяти уровням пригодности. Полученные 

карты рекомендованы к использованию в практике градостроительства, 

землеустройства, планирования инфраструктуры и мониторинга 

территориальных изменений. 

- Подтверждена возможность масштабирования разработанного 

метода на другие регионы и расширения его функциональности за счёт 

интеграции с данными спутникового зондирования, лидара и облачных 

ГИС-сервисов. Разработанная система может быть использована в рамках 

национальной инфраструктуры пространственных данных. 

Таким образом, поставленная цель — повышение точности и 

эффективности пространственного анализа территориальной пригодности на 

основе машинного обучения — достигнута. Результаты диссертационного 

исследования имеют высокую теоретическую значимость для развития методов 

пространственного моделирования и практическую ценность для внедрения в 

системы территориального планирования на национальном и региональном 

уровнях. Разработанная методология может быть адаптирована для решения 

широкого спектра задач в области устойчивого развития, градостроительного 

проектирования и пространственного прогнозирования. 
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ПРИЛОЖЕНИЕ А – Авторское право на модель 
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ПРИЛОЖЕНИЕ Б – Акты внедрения 
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ПРИЛОЖЕНИЕ В – Листинг библиотеки функций 

 

Среда моделирования территориальной пригодности разработана на 

языке программирования Python 3.7.9 с использованием открытого 

программного обеспечения. Исходный код проекта опубликован в открытом 

доступе на GitHub (https://github.com/uavkz/SwarMown) и может быть 

использован для воспроизводимости экспериментов и адаптации под другие 

территориальные сценарии. 

Архитектурно система моделирования состоит из двух основных 

модулей: 

A1) Модуль анализа и предсказания (core-модуль) 

Этот модуль реализует ключевые функции по обработке входных данных, 

формированию признаков, обучению моделей машинного обучения (CNN, 

MLP, Random Forest, Gradient Boosting), а также построению прогностических 

карт территориальной пригодности. Он служит вычислительной основой 

системы и поддерживает как классификационные, так и регрессионные 

сценарии. 

В разработке модуля использовались следующие библиотеки: 

1. NumPy 1.18.2 — высокопроизводительные числовые операции и работа с 

массивами признаков. 

2. Pandas 1.0.3 — загрузка и предобработка табличных атрибутивных 

данных. 

3. Rasterio 1.1.3 — работа с растровыми пространственными слоями 

(GeoTIFF, COG и др.). 

4. GDAL 3.0.4 — доступ к геоданным и функциям преобразования 

координат. 

5. Shapely 1.7.0 — пространственные операции с векторными геометриями. 

6. Scikit-learn 0.22.1 — реализация ансамблевых моделей (Random Forest, 

Gradient Boosting). 

7. TensorFlow 2.1.0 / Keras — построение и обучение нейросетевых моделей 

(CNN–MLP). 

8. Matplotlib / Seaborn — визуализация результатов, построение графиков 

метрик. 

A2) Веб-модуль визуализации и управления (интерфейсный слой) 

Интерфейсный модуль предоставляет пользователю возможности 

загрузки данных, задания параметров модели, визуализации карты прогнозов и 

запуска аналитических сценариев через веб-интерфейс. Для его реализации 

использованы следующие технологии: 

• Django 3.0.3 — серверная часть, реализующая обработку запросов, 

управление данными и взаимодействие с ядром. 

• Leaflet.js 1.6.0 — визуализация пространственных слоёв, отображение 

карт пригодности. 

• L.PixiOverlay.js + Pixi.js 5.1.6 — для отрисовки динамических объектов и 

слоёв на карте (например, интерактивные зоны пригодности, буферы). 

https://github.com/uavkz/SwarMown
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• GeoJSON / TopoJSON — векторный формат обмена пространственными 

слоями. 

 

Разделение на вычислительный и визуальный модули позволяет гибко 

адаптировать систему под различные сценарии территориального анализа и 

интегрировать её с внешними ГИС-платформами. Такая архитектура 

обеспечивает масштабируемость, воспроизводимость экспериментов и 

возможность повторного использования компонентов в смежных задачах 

пространственного моделирования. 
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ПРИЛОЖЕНИЕ Г – Листинг программы по обработке данных 

 

class DataPreprocessor: 

    """Preprocess geospatial data""" 

     

    def __init__(self): 

        self.scaler = StandardScaler() 

     

    def normalize_features(self, features, fit=True): 

        """Normalize features""" 

        original_shape = features.shape 

        features_reshaped = features.reshape(-1, features.shape[-1]) 

         

        if fit: 

            features_normalized = self.scaler.fit_transform(features_reshaped) 

        else: 

            features_normalized = self.scaler.transform(features_reshaped) 

         

        return features_normalized.reshape(original_shape) 

     

    def create_patches(self, features, labels, patch_size=64, stride=32): 

        """Create overlapping patches""" 

        h, w, c = features.shape 

        patches_x, patches_y = [], [] 

         

        for i in range(0, h - patch_size + 1, stride): 

            for j in range(0, w - patch_size + 1, stride): 

                patches_x.append(features[i:i+patch_size, j:j+patch_size, :]) 

                patches_y.append(labels[i:i+patch_size, j:j+patch_size]) 

         

        return np.array(patches_x), np.array(patches_y) 

     

    def augment_data(self, patches_x, patches_y): 

        """Data augmentation""" 

        augmented_x, augmented_y = [], [] 

         

        for x, y in zip(patches_x, patches_y): 

            # Original 

            augmented_x.append(x) 

            augmented_y.append(y) 

             

            # Horizontal flip 

            augmented_x.append(np.fliplr(x)) 

            augmented_y.append(np.fliplr(y)) 



 

128 

             

            # Vertical flip 

            augmented_x.append(np.flipud(x)) 

            augmented_y.append(np.flipud(y)) 

             

            # 90° rotation 

            augmented_x.append(np.rot90(x)) 

            augmented_y.append(np.rot90(y)) 

         

        return np.array(augmented_x), np.array(augmented_y) 

 

# Preprocess 

preprocessor = DataPreprocessor() 

 

print("Preprocessing...") 

features_normalized = preprocessor.normalize_features(features, fit=True) 

print("✓ Normalized") 

 

patches_x, patches_y = preprocessor.create_patches(features_normalized, 

labels,  

                                                    patch_size=64, stride=32) 

print(f"✓ Created {len(patches_x)} patches") 

 

patches_x_aug, patches_y_aug = preprocessor.augment_data(patches_x, 

patches_y) 

print(f"✓ Augmented to {len(patches_x_aug)} samples") 

 

# Split data 

X_train, X_test, y_train, y_test = train_test_split( 

    patches_x_aug, patches_y_aug,  

    test_size=0.2, random_state=42 

) 

 

print(f"\nTrain: {X_train.shape}") 

print(f"Test:  {X_test.shape}") 
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ПРИЛОЖЕНИЕ Д – Листинг программного кода, реализующий 

метод 

 

1. Извлечение признаков из растровых данных (NDVI, уклон): 

import rasterio 

import numpy as np 

from scipy.ndimage import sobel 

 

# NDVI из каналов B08 (NIR) и B04 (RED) 

with rasterio.open('B08.tif') as nir_src, rasterio.open('B04.tif') as red_src: 

    nir = nir_src.read(1).astype(float) 

    red = red_src.read(1).astype(float) 

 

ndvi = (nir - red) / (nir + red + 1e-6) 

 

# Расчёт уклона из DEM 

with rasterio.open('dem.tif') as dem_src: 

    dem = dem_src.read(1) 

dx = sobel(dem, axis=1) 

dy = sobel(dem, axis=0) 

slope = np.hypot(dx, dy) 

 

 

2. Формирование обучающей выборки. 

import pandas as pd 

 

features = pd.DataFrame({ 

    'ndvi': ndvi.ravel(), 

    'slope': slope.ravel(), 

    'population_density': population.ravel(), 

    'elevation': dem.ravel() 

}) 

 

# Целевая переменная: классы пригодности (0 – низкая, 1 – средняя, 2 – 

высокая) 

labels = suitability_mask.ravel() 


